Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37376888

RESUMEN

The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease. Previously, our group developed methods to produce prostate organoids using induced pluripotent stem cells (iPSCs). Here, we show that human iPSCs can be differentiated into prostate organoids using neonatal rat seminal vesicle mesenchyme in vitro. The organoids can be used to study prostate development or modified to study prostate cancer. We also elucidated molecular drivers of prostate induction through RNA-sequencing analyses of the rat urogenital sinus and neonatal seminal vesicles. We identified candidate drivers of prostate development evident in the inductive mesenchyme and epithelium involved with prostate specification. Our top candidates included Spx, Trib3, Snai1, Snai2, Nrg2 and Lrp4. This work lays the foundations for further interrogation of the reactivation of developmental genes in adulthood, leading to prostate disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Próstata , Masculino , Humanos , Ratas , Animales , Próstata , Roedores , Sistema Urogenital/fisiología , Diferenciación Celular/genética , Organoides
2.
Am J Hum Genet ; 109(5): 928-943, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35397207

RESUMEN

Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-ß signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.


Asunto(s)
Cardiomiopatía Hipertrófica , Cilios , Adulto , Animales , Cardiomiopatía Hipertrófica/metabolismo , Niño , Cilios/genética , Cilios/metabolismo , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón , Hígado , Mutación/genética , Pez Cebra/genética
3.
Clin Genet ; 103(3): 330-334, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36273371

RESUMEN

Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.


Asunto(s)
Ciliopatías , Humanos , Síndrome , Ciliopatías/genética , Proteínas/genética , Riñón , Mutación , Cilios/genética
4.
Proc Natl Acad Sci U S A ; 117(2): 1113-1118, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879347

RESUMEN

Genetic and phenotypic heterogeneity and the lack of sufficiently large patient cohorts pose a significant challenge to understanding genetic associations in rare disease. Here we identify Bsnd (alias Barttin) as a genetic modifier of cystic kidney disease in Joubert syndrome, using a Cep290-deficient mouse model to recapitulate the phenotypic variability observed in patients by mixing genetic backgrounds in a controlled manner and performing genome-wide analysis of these mice. Experimental down-regulation of Bsnd in the parental mouse strain phenocopied the severe cystic kidney phenotype. A common polymorphism within human BSND significantly associates with kidney disease severity in a patient cohort with CEP290 mutations. The striking phenotypic modifications we describe are a timely reminder of the value of mouse models and highlight the significant contribution of genetic background. Furthermore, if appropriately managed, this can be exploited as a powerful tool to elucidate mechanisms underlying human disease heterogeneity.


Asunto(s)
Anomalías Múltiples/genética , Cerebelo/anomalías , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Anomalías del Ojo/genética , Genes Modificadores , Enfermedades Renales Quísticas/genética , Retina/anomalías , Animales , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad/genética , Enfermedades Renales , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad
5.
RNA ; 26(11): 1575-1588, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32660984

RESUMEN

miR-140 is selectively expressed in cartilage. Deletion of the entire Mir140 locus in mice results in growth retardation and early-onset osteoarthritis-like pathology; however, the relative contribution of miR-140-5p or miR-140-3p to the phenotype remains to be determined. An unbiased small RNA sequencing approach identified miR-140-3p as significantly more abundant (>10-fold) than miR-140-5p in human cartilage. Analysis of these data identified multiple miR-140-3p isomiRs differing from the miRBase annotation at both the 5' and 3' end, with >99% having one of two seed sequences (5' bases 2-8). Canonical (miR-140-3p.2) and shifted (miR-140-3p.1) seed isomiRs were overexpressed in chondrocytes and transcriptomics performed to identify targets. miR-140-3p.1 and miR-140-3p.2 significantly down-regulated 694 and 238 genes, respectively, of which only 162 genes were commonly down-regulated. IsomiR targets were validated using 3'UTR luciferase assays. miR-140-3p.1 targets were enriched within up-regulated genes in rib chondrocytes of Mir140-null mice and within down-regulated genes during human chondrogenesis. Finally, through imputing the expression of miR-140 from the expression of the host gene WWP2 in 124 previously published data sets, an inverse correlation with miR-140-3p.1 predicted targets was identified. Together these data suggest the novel seed containing isomiR miR-140-3p.1 is more functional than original consensus miR-140-3p seed containing isomiR.


Asunto(s)
Cartílago/química , MicroARNs/genética , Análisis de Secuencia de ARN/métodos , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Condrogénesis , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Anotación de Secuencia Molecular , Especificidad de Órganos , Regulación hacia Arriba
6.
Hum Mutat ; 42(10): 1221-1228, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212438

RESUMEN

Half of patients with a ciliopathy syndrome remain unsolved after initial analysis of whole exome sequencing (WES) data, highlighting the need for improved variant filtering and annotation. By candidate gene curation of WES data, combined with homozygosity mapping, we detected a homozygous predicted synonymous allele in NPHP3 in two children with hepatorenal fibrocystic disease from a consanguineous family. Analyses on patient-derived RNA shows activation of a cryptic mid-exon splice donor leading to frameshift. Remarkably, the same rare variant was detected in four additional families with hepatorenal disease from UK, US, and Saudi patient cohorts and in addition, another synonymous NPHP3 variant was identified in an unsolved case from the Genomics England 100,000 Genomes data set. We conclude that synonymous NPHP3 variants, not reported before and discarded by pathogenicity pipelines, solved several families with a ciliopathy syndrome. These findings prompt careful reassessment of synonymous variants, especially if they are rare and located in candidate genes.


Asunto(s)
Cirrosis Hepática , Enfermedades Renales Poliquísticas , Niño , Enfermedades Genéticas Congénitas , Homocigoto , Humanos , Cinesinas , Secuenciación del Exoma
7.
Am J Hum Genet ; 103(4): 612-620, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30269812

RESUMEN

Joubert syndrome (JBTS) is a genetically heterogeneous autosomal-recessive neurodevelopmental ciliopathy. We investigated further the underlying genetic etiology of Joubert syndrome by studying two unrelated families in whom JBTS was not associated with pathogenic variants in known JBTS-associated genes. Combined autozygosity mapping of both families highlighted a candidate locus on chromosome 10 (chr10: 101569997-109106128, UCSC Genome Browser hg 19), and exome sequencing revealed two missense variants in ARL3 within the candidate locus. The encoded protein, ADP ribosylation factor-like GTPase 3 (ARL3), is a small GTP-binding protein that is involved in directing lipid-modified proteins into the cilium in a GTP-dependent manner. Both missense variants replace the highly conserved Arg149 residue, which we show to be necessary for the interaction with its guanine nucleotide exchange factor ARL13B, such that the mutant protein is associated with reduced INPP5E and NPHP3 localization in cilia. We propose that ARL3 provides a potential hub in the network of proteins implicated in ciliopathies, whereby perturbation of ARL3 leads to the mislocalization of multiple ciliary proteins as a result of abnormal displacement of lipidated protein cargo.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Anomalías Múltiples/genética , Cerebelo/anomalías , Cilios/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Mutación Missense/genética , Retina/anomalías , Adulto , Niño , Preescolar , Cromosomas Humanos Par 10/genética , Exoma/genética , Femenino , Proteínas de Unión al GTP/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Transporte de Proteínas/genética , Adulto Joven
8.
Proc Natl Acad Sci U S A ; 115(49): 12489-12494, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30446612

RESUMEN

Genetic treatments of renal ciliopathies leading to cystic kidney disease would provide a real advance in current therapies. Mutations in CEP290 underlie a ciliopathy called Joubert syndrome (JBTS). Human disease phenotypes include cerebral, retinal, and renal disease, which typically progresses to end stage renal failure (ESRF) within the first two decades of life. While currently incurable, there is often a period of years between diagnosis and ESRF that provides a potential window for therapeutic intervention. By studying patient biopsies, patient-derived kidney cells, and a mouse model, we identify abnormal elongation of primary cilia as a key pathophysiological feature of CEP290-associated JBTS and show that antisense oligonucleotide (ASO)-induced splicing of the mutated exon (41, G1890*) restores protein expression in patient cells. We demonstrate that ASO-induced splicing leading to exon skipping is tolerated, resulting in correct localization of CEP290 protein to the ciliary transition zone, and restoration of normal cilia length in patient kidney cells. Using a gene trap Cep290 mouse model of JBTS, we show that systemic ASO treatment can reduce the cystic burden of diseased kidneys in vivo. These findings indicate that ASO treatment may represent a promising therapeutic approach for kidney disease in CEP290-associated ciliopathy syndromes.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cerebelo/anomalías , Exones/genética , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Proteínas Nucleares/genética , Retina/anomalías , Adolescente , Animales , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Células Cultivadas , Cerebelo/patología , Proteínas del Citoesqueleto , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Riñón/citología , Masculino , Ratones , Mutación , Retina/patología
9.
Hum Mol Genet ; 26(23): 4657-4667, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973549

RESUMEN

Joubert syndrome (JBTS) is the archetypal ciliopathy caused by mutation of genes encoding ciliary proteins leading to multi-system phenotypes, including a cerebello-retinal-renal syndrome. JBTS is genetically heterogeneous, however mutations in CEP290 are a common underlying cause. The renal manifestation of JBTS is a juvenile-onset cystic kidney disease, known as nephronophthisis, typically progressing to end-stage renal failure within the first two decades of life, thus providing a potential window for therapeutic intervention. In order to increase understanding of JBTS and its associated kidney disease and to explore potential treatments, we conducted a comprehensive analysis of primary renal epithelial cells directly isolated from patient urine (human urine-derived renal epithelial cells, hURECs). We demonstrate that hURECs from a JBTS patient with renal disease have elongated and disorganized primary cilia and that this ciliary phenotype is specifically associated with an absence of CEP290 protein. Treatment with the Sonic hedgehog (Shh) pathway agonist purmorphamine or cyclin-dependent kinase inhibition (using roscovitine and siRNA directed towards cyclin-dependent kinase 5) ameliorated the cilia phenotype. In addition, purmorphamine treatment was shown to reduce cyclin-dependent kinase 5 in patient cells, suggesting a convergence of these signalling pathways. To our knowledge, this is the most extensive analysis of primary renal epithelial cells from JBTS patients to date. It demonstrates the feasibility and power of this approach to directly assess the consequences of patient-specific mutations in a physiologically relevant context and a previously unrecognized convergence of Shh agonism and cyclin-dependent kinase inhibition as potential therapeutic targets.


Asunto(s)
Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/patología , Cerebelo/anomalías , Cilios/patología , Anomalías del Ojo/tratamiento farmacológico , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/tratamiento farmacológico , Enfermedades Renales Quísticas/patología , Morfolinas/uso terapéutico , Purinas/uso terapéutico , Retina/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Cerebelo/metabolismo , Cerebelo/patología , Niño , Preescolar , Cilios/efectos de los fármacos , Cilios/genética , Cilios/metabolismo , Ciliopatías/tratamiento farmacológico , Ciliopatías/genética , Ciliopatías/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas del Citoesqueleto , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Humanos , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Fallo Renal Crónico/genética , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Masculino , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linaje , Enfermedades Renales Poliquísticas/genética , Cultivo Primario de Células , Retina/metabolismo , Retina/patología , Roscovitina , Transducción de Señal
10.
Xenobiotica ; 48(4): 382-399, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28436712

RESUMEN

1. The disposition and metabolism of galunisertib (LY2157299 monohydrate, a TGF-ßRI Kinase/ALK5 Inhibitor) was characterized following a single oral dose of 150 mg of [14C]-galunisertib (100 µCi) to six healthy human subjects. 2. The galunisertib plasma half-life was 8.6 h, while the 14C half-life was 10.0 h. Galunisertib was abundant in circulation (40.3% of the 14C AUC024 h), with 7 additional metabolites detected in plasma. Two metabolites LSN3199597 (M5, mono-oxidation), and M4 (glucuronide of M3) were the most abundant circulating metabolites (10.7 and 9.0% of the 14C AUC024 h respectively). The pharmacological activity of LSN3199597 was tested and found to be significantly less potent than galunisertib. 3. The dose was recovered in feces (64.5%) and in urine (36.8%). Galunisertib was cleared primarily by metabolism, based on low recovery of parent in excreta (13.0% of dose). Due to the slow in vitro metabolism of galunisertib in suspended hepatocytes, a long term hepatocyte system was used to model the human excretion profile. 4. Expressed cytochromes P450 and hepatocytes indicated clearance was primarily CYP3A4-mediated. Mechanistic static modeling that incorporated small non-CYP-mediated metabolic clearance and renal clearance components predicted an AUC ratio of 4.7 for the effect of itraconazole, a strong CYP3A4 inhibitor, on galunisertib.


Asunto(s)
Radioisótopos de Carbono , Inhibidores del Citocromo P-450 CYP3A , Itraconazol , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazoles , Quinolinas , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Administración Oral , Adulto , Anciano , Inhibidores del Citocromo P-450 CYP3A/administración & dosificación , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Heces , Femenino , Humanos , Itraconazol/administración & dosificación , Itraconazol/farmacocinética , Masculino , Persona de Mediana Edad , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Orina
11.
Proc Natl Acad Sci U S A ; 111(27): 9893-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24946806

RESUMEN

Nephronophthisis (NPHP) is the major cause of pediatric renal failure, yet the disease remains poorly understood, partly due to the lack of appropriate animal models. Joubert syndrome (JBTS) is an inherited ciliopathy giving rise to NPHP with cerebellar vermis aplasia and retinal degeneration. Among patients with JBTS and a cerebello-oculo-renal phenotype, mutations in CEP290 (NPHP6) are the most common genetic lesion. We present a Cep290 gene trap mouse model of JBTS that displays the kidney, eye, and brain abnormalities that define the syndrome. Mutant mice present with cystic kidney disease as neonates. Newborn kidneys contain normal amounts of lymphoid enhancer-binding factor 1 (Lef1) and transcription factor 1 (Tcf1) protein, indicating normal function of the Wnt signaling pathway; however, an increase in the protein Gli3 repressor reveals abnormal Hedgehog (Hh) signaling evident in newborn kidneys. Collecting duct cells from mutant mice have abnormal primary cilia and are unable to form spheroid structures in vitro. Treatment of mutant cells with the Hh agonist purmorphamine restored normal spheroid formation. Renal epithelial cells from a JBTS patient with CEP290 mutations showed similar impairments to spheroid formation that could also be partially rescued by exogenous stimulation of Hh signaling. These data implicate abnormal Hh signaling as the cause of NPHP and suggest that Hh agonists may be exploited therapeutically.


Asunto(s)
Enfermedades Cerebelosas/metabolismo , Anomalías del Ojo/metabolismo , Proteínas Hedgehog/metabolismo , Enfermedades Renales Quísticas/congénito , Retina/anomalías , Transducción de Señal , Anomalías Múltiples , Animales , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Cerebelo/anomalías , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/terapia , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Retina/metabolismo
12.
Int J Mol Sci ; 18(5)2017 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-28481241

RESUMEN

Galunisertib, a Transforming growth factor-ßRI (TGF-ßRI) kinase inhibitor, blocks TGF-ß-mediated tumor growth in glioblastoma. In a three-arm study of galunisertib (300 mg/day) monotherapy (intermittent dosing; each cycle =14 days on/14 days off), lomustine monotherapy, and galunisertib plus lomustine therapy, baseline tumor tissue was evaluated to identify markers associated with tumor stage (e.g., histopathology, Ki67, glial fibrillary acidic protein) and TGF-ß-related signaling (e.g., pSMAD2). Other pharmacodynamic assessments included chemokine, cytokine, and T cell subsets alterations. 158 patients were randomized to galunisertib plus lomustine (n = 79), galunisertib (n = 39) and placebo+lomustine (n = 40). In 127 of these patients, tissue was adequate for central pathology review and biomarker work. Isocitrate dehydrogenase (IDH1) negative glioblastoma patients with baseline pSMAD2⁺ in cytoplasm had median overall survival (OS) 9.5 months vs. 6.9 months for patients with no tumor pSMAD2 expression (p = 0.4574). Eight patients were IDH1 R132H⁺ and had a median OS of 10.4 months compared to 6.9 months for patients with negative IDH1 R132H (p = 0.5452). IDH1 status was associated with numerically higher plasma macrophage-derived chemokine (MDC/CCL22), higher whole blood FOXP3, and reduced tumor CD3⁺ T cell counts. Compared to the baseline, treatment with galunisertib monotherapy preserved CD4⁺ T cell counts, eosinophils, lymphocytes, and the CD4/CD8 ratio. The T-regulatory cell compartment was associated with better OS with MDC/CCL22 as a prominent prognostic marker.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glioblastoma/tratamiento farmacológico , Lomustina/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Pirazoles/administración & dosificación , Quinolinas/administración & dosificación , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores de Tumor/sangre , Relación CD4-CD8 , Citocinas/sangre , Femenino , Factores de Transcripción Forkhead/sangre , Factores de Transcripción Forkhead/metabolismo , Glioblastoma/sangre , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/metabolismo , Lomustina/efectos adversos , Lomustina/uso terapéutico , Masculino , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/patología , Pirazoles/efectos adversos , Pirazoles/uso terapéutico , Quinolinas/efectos adversos , Quinolinas/uso terapéutico , Proteína Smad2/metabolismo , Análisis de Supervivencia
13.
Blood ; 122(2): 188-92, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23699597

RESUMEN

Mutations in the Wilms tumor suppressor 1 (WT1) gene are as frequent in acute myeloid leukemia (AML) as in nephroblastma and predict poor prognosis. However, the role of WT1 in hematopoiesis remains unclear. We show that Wt1-deficient mouse embryonic stem cells exhibit reduced hematopoietic potential caused by vascular endothelial growth factor A (Vegf-a)-dependent apoptosis of hematopoietic progenitor cells associated with overproduction of the Vegf-a120 isoform. We demonstrate that Wt1 promotes exon inclusion using a Vegf-a minigene-based splicing assay. These data identify a critical role for Wt1 in hematopoiesis and Vegf-a as a cellular RNA whose splicing is potentially regulated by Wt1. The correction of Wt1 deficiency by treatment with exogenous Vegf-a protein indicates that the Wt1/Vegf-a axis is a molecular pathway that could be exploited for the management/treatment of poor prognosis AMLs.


Asunto(s)
Empalme Alternativo , Hematopoyesis/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo , Alelos , Animales , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas WT1/deficiencia
14.
Br J Clin Pharmacol ; 77(5): 796-807, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24868575

RESUMEN

AIMS: To identify prospectively a safe therapeutic window for administration of a novel oral transforming growth factor ß (TGF-ß) inhibitor, LY2157299 monohydrate, based on a pharmacokinetic/pharmacodynamic (PK/PD) model. Simulations of population plasma exposures and biomarker responses in tumour were performed for future trials of LY2157299 in glioblastoma and other cancer populations. METHODS: The model was updated after completion of each cohort during the first-in-human dose (FHD) study. The flexible design allowed continuous assessment of PK variability by recruiting the required number of patients in each cohort. Based on 30% inhibition of TGF-ß RI kinase phosphorylates (pSMAD), biologically effective exposures were anticipated to be reached from 160 mg onwards. The therapeutic window was predicted, based on animal data, to be between 160 and 360 mg. RESULTS: No medically significant safety issues were observed and no dose limiting toxicities were established in this study. Observed plasma exposures (medians 2.43 to 3.7 mg l⁻¹ h, respectively) with doses of 160 mg to 300 mg were within the predicted therapeutic window. Responses, based on the MacDonald criteria, were observed in these patients. CONCLUSIONS: A therapeutic window for the clinical investigation of LY2157299 in cancer patients was defined using a targeted PK/PD approach, which integrated translational biomarkers and preclinical toxicity. The study supports using a therapeutic window based on a PK/PD model in early oncology development.


Asunto(s)
Pirazoles/farmacocinética , Quinolinas/farmacocinética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Adulto , Anciano , Biomarcadores , Estudios de Cohortes , Descubrimiento de Drogas , Femenino , Glioblastoma/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Pirazoles/farmacología , Quinolinas/farmacología
15.
Hum Mol Genet ; 19(18): 3544-56, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20591825

RESUMEN

Wilms' tumour suppressor gene, WT1, is mutated/deleted in approximately 15% of Wilms' tumours, highly expressed in the majority of other cancers and is essential for normal embryonic development. The gene encodes multiple isoforms of a zinc-finger (ZF) protein with diverse cellular functions, in particular participating in both transcriptional and post-transcriptional gene regulation. Physical interactions of other cellular proteins with WT1 are known to modulate its function. However, despite the isolation of several WT1-binding proteins, the mechanisms involved in regulating WT1 activities are not clearly understood. In this study, we report the identification of the Krüppel-like ZF protein, ZNF224, as a novel human WT1-associating protein and demonstrate that ZNF224 and its isoform ZNF255 show a specific pattern of interaction with the WT1 splicing variants WT1(-KTS) and WT1(+KTS). These interactions occur in different subcellular compartments and are devoted to control different cellular pathways. The nuclear interaction between ZNF224 and WT1(-KTS) results in an increase in trascriptional activation mediated by WT1, implying that ZNF224 acts as a co-regulator of WT1, whereas, on the contrary, the results obtained for ZNF255 suggest a role for this protein in RNA processing together with WT1. Moreover, our data give the first functional information about the involvement of ZNF255 in a specific molecular pathway, RNA maturation and processing.


Asunto(s)
Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Proteínas WT1/metabolismo , Línea Celular , Humanos , Unión Proteica , Isoformas de Proteínas/genética , Proteínas Represoras/genética , Activación Transcripcional , Proteínas WT1/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
16.
Mol Genet Genomic Med ; 9(12): e1603, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33486889

RESUMEN

BACKGROUND: Mutations in ciliary genes cause a spectrum of both overlapping and distinct clinical syndromes (ciliopathies). CEP120 and CC2D2A are paradigmatic examples for this genetic heterogeneity and pleiotropy as mutations in both cause Joubert syndrome but are also associated with skeletal ciliopathies and Meckel syndrome, respectively. The molecular basis for this phenotypical variability is not understood but basal exon skipping likely contributes to tolerance for deleterious mutations via tissue-specific preservation of the amount of expressed functional protein. METHODS: We systematically reviewed and annotated genetic variants and clinical presentations reported in CEP120- and CC2D2A-associated disease and we combined in silico and ex vivo approaches to study tissue-specific transcripts and identify molecular targets for exon skipping. RESULTS: We confirmed more severe clinical presentations associated with truncating CC2D2A mutations. We identified and confirmed basal exon skipping in the kidney, with possible relevance for organ-specific disease manifestations. Finally, we proposed a multimodal approach to classify exons amenable to exon skipping. By mapping reported variants, 14 truncating mutations in 7 CC2D2A exons were identified as potentially rescuable by targeted exon skipping, an approach that is already in clinical use for other inherited human diseases. CONCLUSION: Genotype-phenotype correlations for CC2D2A support the deleteriousness of null alleles and CC2D2A, but not CEP120, offers potential for therapeutic exon skipping approaches.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciliopatías/genética , Proteínas del Citoesqueleto/genética , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Alelos , Ciliopatías/diagnóstico , Ciliopatías/terapia , Exones , Perfilación de la Expresión Génica , Sitios Genéticos , Terapia Genética/métodos , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Especificidad de Órganos , Fenotipo , Medicina de Precisión
17.
Sci Rep ; 11(1): 10452, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001919

RESUMEN

MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways. Here we present data from the first global miR-324-null mice, in which increased excitability and interictal discharges were identified in vitro in the hippocampus. RNA sequencing was used to identify differentially expressed genes in miR-324-null mice which may contribute to this increased hippocampal excitability, and 3'UTR luciferase assays and western blotting revealed that two of these, Suox and Cd300lf, are novel direct targets of miR-324. Characterisation of microRNAs that produce an effect on neurological activity, such as miR-324, and identification of the pathways they regulate will allow a better understanding of the processes involved in normal neurological function and in turn may present novel pharmaceutical targets in treating neurological disease.


Asunto(s)
Excitabilidad Cortical/genética , Hipocampo/fisiología , MicroARNs/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Receptores Inmunológicos/genética , Animales , Línea Celular , Femenino , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Neocórtex/fisiología , RNA-Seq , Transducción de Señal/genética
18.
Cancer Chemother Pharmacol ; 84(5): 1003-1015, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31482224

RESUMEN

PURPOSE: To evaluate the exposure-overall survival (OS) relationship in patients with advanced pancreatic cancer treated with galunisertib plus gemcitabine (GG) or gemcitabine plus placebo (GP). METHODS: Galunisertib 300 mg/day was given orally as intermittent dosing and gemcitabine as per label. Galunisertib exposure metrics for each patient in the GG arm (n = 99) of a phase 2 study of pancreatic cancer were calculated. Parametric survival models were used to identify influential baseline and response covariates on OS. RESULTS: The population pharmacokinetics dataset included data from 297 patients/healthy subjects (age: 22-84 years, weight: 39-126 kg) across multiple studies, including this pancreatic cancer study. Galunisertib was rapidly absorbed with peak concentrations attained within 0.5-2 h and had an elimination half-life of 8 h. Between-subject variance on apparent clearance was estimated to be 47%. Age was the only characteristic to have a statistically significant effect on apparent clearance. A parametric Weibull survival model with treatment effect (dose) estimated a hazard ratio of 0.796, after adjusting for patient baseline factors that were significantly associated with OS. There was also a flat daily exposure-OS relationship within the observed exposure range, once all significant baseline covariates were included. Response covariates, such as reduction in CA19-9, time on treatment, and cumulative exposure over treatment cycles were also identified as significant factors for OS for patients with pancreatic cancer. CONCLUSIONS: This analysis suggests that 300 mg/day galunisertib administered as 150 mg twice daily for 14 days on/14 days off treatment is an appropriate dosing regimen for patients with pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Antígeno CA-19-9/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Femenino , Semivida , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/patología , Pirazoles/administración & dosificación , Quinolinas/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Análisis de Supervivencia , Adulto Joven , Gemcitabina
19.
Sci Rep ; 9(1): 10828, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346239

RESUMEN

Joubert syndrome (JBTS) is an incurable multisystem ciliopathy syndrome. The most commonly mutated gene in JBTS patients with a cerebello-retinal-renal phenotype is CEP290 (alias JBTS5). The encoded CEP290 protein localises to the proximal end of the primary cilium, in the transition zone, where it controls ciliary protein composition and signalling. We examined primary cilium structure and composition in fibroblast cells derived from homozygous and compound heterozygous JBTS5 patients with nonsense mutations in CEP290 and show that elongation of cilia, impaired ciliogenesis and ciliary composition defects are typical features in JBTS5 cells. Targeted skipping of the mutated exon c.5668 G > T using antisense oligonucleotide (ASO) therapy leads to restoration of CEP290 protein expression and functions at the transition zone in homozygous and compound heterozygous JBTS5 cells, allowing a rescue of both cilia morphology and ciliary composition. This study, by demonstrating that targeted exon skipping is able to rescue ciliary protein composition defects, provides functional evidence for the efficacy of this approach in the treatment of JBTS.


Asunto(s)
Anomalías Múltiples/genética , Cerebelo/anomalías , Cilios/metabolismo , Ciliopatías/genética , Exones , Anomalías del Ojo/genética , Fibroblastos/metabolismo , Enfermedades Renales Quísticas/genética , Retina/anomalías , Anomalías Múltiples/metabolismo , Cerebelo/metabolismo , Ciliopatías/metabolismo , Anomalías del Ojo/metabolismo , Humanos , Enfermedades Renales Quísticas/metabolismo , Transporte de Proteínas , Retina/metabolismo
20.
Eur J Hum Genet ; 26(12): 1791-1796, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002499

RESUMEN

The majority of multi-exon genes undergo alternative splicing to produce different mRNA transcripts and this may occur in a tissue-specific manner. Assessment of mRNA transcripts isolated from blood samples may sometimes be unhelpful in determining the affect on function of putative splice-site variants affecting kidney-specific mRNA transcripts. Here we present data demonstrating the power of using human urine-derived renal epithelial cells (hUREC) as a source of kidney RNA. We report clinical and molecular genetic data from three affected cases from two families all with end-stage renal disease by 15 years of age. In both families, heterozygous variants which are predicted to effect function in NPHP3 were found on one allele, in combination with a synonymous SNV (c.2154C>T; p.Phe718=), 18 base pairs from the exon-intron boundary within exon 15 of NPHP3. The only mRNA transcript amplified from wild-type whole blood showed complete splicing out of exon 15. Urine samples obtained from control subjects and the father of family 2, who carried the synonymous SNV variant, were therefore used to culture hUREC and allowed us to obtain kidney-specific mRNA. Control kidney mRNA showed retention of exon 15, while the mRNA from the patient's father confirmed evidence of a heterozygous alternate splicing of exon 15 of NPHP3. Analysis of RNA derived from hUREC allows for a comparison of kidney-specific and whole-blood RNA transcripts and for assessment of the effect on function of putative splice variants leading to end-stage kidney disease.


Asunto(s)
Células Epiteliales/metabolismo , Fallo Renal Crónico/genética , Polimorfismo de Nucleótido Simple , Empalme del ARN , Orina/citología , Adolescente , Células Cultivadas , Niño , Femenino , Pruebas Genéticas/métodos , Humanos , Fallo Renal Crónico/patología , Cinesinas/genética , Cinesinas/metabolismo , Cultivo Primario de Células/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA