Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol ; 94(6): 1129-1137, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30312475

RESUMEN

The photophysical and photochemical properties of the xanthene dyes mercurochrome (MCr) and eosin-Y (Eos); and the phenazine dye safranine-O (SF) are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of low generations. The dendrimers produce a red shift in the UV-vis absorption spectra of the dyes, which increases with concentration and the size of the PAMAM molecule. The Stern-Volmer plots of fluorescence quenching for xanthenic dyes present a downward curvature. It is ascribed to a static mechanism involving a dye-dendrimer binding. A non-linear fitting of the SV plots allows the calculation of the binding constants. For SF, the fluorescence is only slightly quenched by PAMAMs and the SV plots are linear. The binding constants are in the order Kbind (SF) ≪ Kbind (Eos) < Kbind (MCr). The difference must be due to important specific structural effects. A decrease in the triplet lifetime and an increase in the absorption of the semireduced form of the dyes are observed in the presence of dendrimers. While for the two xanthene dyes, the rate constants reach the diffusional limit for G2 and G3, for SF they are one order of magnitude lower. This is explained by a different quenching mechanism of the two types of dyes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA