Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059590

RESUMEN

Most vertebrate species undergo tooth replacement throughout adult life. This process is marked by the shedding of existing teeth and the regeneration of tooth organs. However, little is known about the genetic circuitry regulating tooth replacement. Here, we tested whether fish orthologs of genes known to regulate mammalian hair regeneration have effects on tooth replacement. Using two fish species that demonstrate distinct modes of tooth regeneration, threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), we found that transgenic overexpression of four different genes changed tooth replacement rates in the direction predicted by a hair regeneration model: Wnt10a and Grem2a increased tooth replacement rate, whereas Bmp6 and Dkk2 strongly inhibited tooth formation. Thus, similar to known roles in hair regeneration, Wnt and BMP signals promote and inhibit regeneration, respectively. Regulation of total tooth number was separable from regulation of replacement rates. RNA sequencing of stickleback dental tissue showed that Bmp6 overexpression resulted in an upregulation of Wnt inhibitors. Together, these data support a model in which different epithelial organs, such as teeth and hair, share genetic circuitry driving organ regeneration.


Asunto(s)
Smegmamorpha , Diente , Animales , Pez Cebra/genética , Odontogénesis/genética , Animales Modificados Genéticamente , Smegmamorpha/genética , Mamíferos
2.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805962

RESUMEN

Cis-regulatory changes are thought to play a major role in adaptation. Threespine sticklebacks have repeatedly colonized freshwater habitats in the Northern Hemisphere, where they have evolved a suite of phenotypes that distinguish them from marine populations, including changes in physiology, behavior, and morphology. To understand the role of gene regulatory evolution in adaptive divergence, here we investigate cis-regulatory changes in gene expression between marine and freshwater ecotypes through allele-specific expression (ASE) in F1 hybrids. Surveying seven ecologically relevant tissues, including three sampled across two developmental stages, we identified cis-regulatory divergence affecting a third of genes, nearly half of which were tissue-specific. Next, we compared allele-specific expression in dental tissues at two timepoints to characterize cis-regulatory changes during development between marine and freshwater fish. Applying a genome-wide test for selection on cis-regulatory changes, we find evidence for lineage-specific selection on several processes between ecotypes, including the Wnt signaling pathway in dental tissues. Finally, we show that genes with ASE, particularly those that are tissue-specific, are strongly enriched in genomic regions of repeated marine-freshwater divergence, supporting an important role for these cis-regulatory differences in parallel adaptive evolution of sticklebacks to freshwater habitats. Altogether, our results provide insight into the cis-regulatory landscape of divergence between stickleback ecotypes across tissues and during development, and support a fundamental role for tissue-specific cis-regulatory changes in rapid adaptation to new environments.


Asunto(s)
Smegmamorpha , Animales , Smegmamorpha/genética , Agua Dulce , Adaptación Fisiológica/genética , Genoma , Aclimatación
3.
Dev Biol ; 492: 111-118, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36198347

RESUMEN

Development and regeneration are orchestrated by gene regulatory networks that operate in part through transcriptional enhancers. Although many enhancers are pleiotropic and are active in multiple tissues, little is known about whether enhancer pleiotropy is due to 1) site pleiotropy, in which individual transcription factor binding sites (TFBS) are required for activity in multiple tissues, or 2) multiple distinct sites that regulate expression in different tissues. Here, we investigated the pleiotropy of an intronic enhancer of the stickleback Bone morphogenetic protein 6 (Bmp6) gene. This enhancer was previously shown to regulate evolved changes in tooth number and tooth regeneration, and is highly pleiotropic, with robust activity in both fins and teeth throughout embryonic, larval, and adult life, and in the heart and kidney in adult fish. We tested the hypothesis that the pleiotropy of this enhancer is due to site pleiotropy of an evolutionarily conserved predicted Foxc1 TFBS. Transgenic analysis and site-directed mutagenesis experiments both deleting and scrambling this predicted Foxc1 TFBS revealed that the binding site is required for enhancer activity in both teeth and fins throughout embryonic, larval, and adult development, and in the heart and kidney in adult fish. Collectively these data support a model where the pleiotropy of this Bmp6 enhancer is due to site pleiotropy and this putative binding site is required for enhancer activity in multiple anatomical sites from the embryo to the adult.


Asunto(s)
Proteína Morfogenética Ósea 6 , Smegmamorpha , Animales , Proteína Morfogenética Ósea 6/genética , Smegmamorpha/genética , Elementos de Facilitación Genéticos/genética , Sitios de Unión/genética , Aletas de Animales , Regulación del Desarrollo de la Expresión Génica/genética
4.
Proc Biol Sci ; 290(2009): 20231686, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876194

RESUMEN

Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel role for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a circulating Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.


Asunto(s)
Peces Killi , Animales , Peces Killi/genética , Receptor de Galanina Tipo 2/genética , Bahamas , Fenotipo
5.
PLoS Genet ; 14(6): e1007443, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29897962

RESUMEN

Changes in developmental gene regulatory networks enable evolved changes in morphology. These changes can be in cis regulatory elements that act in an allele-specific manner, or changes to the overall trans regulatory environment that interacts with cis regulatory sequences. Here we address several questions about the evolution of gene expression accompanying a convergently evolved constructive morphological trait, increases in tooth number in two independently derived freshwater populations of threespine stickleback fish (Gasterosteus aculeatus). Are convergently evolved cis and/or trans changes in gene expression associated with convergently evolved morphological evolution? Do cis or trans regulatory changes contribute more to gene expression changes accompanying an evolved morphological gain trait? Transcriptome data from dental tissue of ancestral low-toothed and two independently derived high-toothed stickleback populations revealed significantly shared gene expression changes that have convergently evolved in the two high-toothed populations. Comparing cis and trans regulatory changes using phased gene expression data from F1 hybrids, we found that trans regulatory changes were predominant and more likely to be shared among both high-toothed populations. In contrast, while cis regulatory changes have evolved in both high-toothed populations, overall these changes were distinct and not shared among high-toothed populations. Together these data suggest that a convergently evolved trait can occur through genetically distinct regulatory changes that converge on similar trans regulatory environments.


Asunto(s)
Smegmamorpha/genética , Alelos , Animales , Evolución Biológica , Mapeo Cromosómico/métodos , Evolución Molecular , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Frecuencia de los Genes/genética , Redes Reguladoras de Genes/genética , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo , Diente
6.
PLoS Genet ; 14(6): e1007449, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29902209

RESUMEN

Threespine stickleback fish offer a powerful system to dissect the genetic basis of morphological evolution in nature. Marine sticklebacks have repeatedly invaded and adapted to numerous freshwater environments throughout the Northern hemisphere. In response to new diets in freshwater habitats, changes in craniofacial morphology, including heritable increases in tooth number, have evolved in derived freshwater populations. Using a combination of quantitative genetics and genome resequencing, here we fine-mapped a quantitative trait locus (QTL) regulating evolved tooth gain to a cluster of ten QTL-associated single nucleotide variants, all within intron four of Bone Morphogenetic Protein 6 (Bmp6). Transgenic reporter assays revealed this intronic region contains a tooth enhancer. We induced mutations in Bmp6, revealing required roles for survival, growth, and tooth patterning. Transcriptional profiling of Bmp6 mutant dental tissues identified significant downregulation of a set of genes whose orthologs were previously shown to be expressed in quiescent mouse hair stem cells. Collectively these data support a model where mutations within a Bmp6 intronic tooth enhancer contribute to evolved tooth gain, and suggest that ancient shared genetic circuitry regulates the regeneration of diverse vertebrate epithelial appendages including mammalian hair and fish teeth.


Asunto(s)
Proteína Morfogenética Ósea 6/genética , Smegmamorpha/genética , Animales , Evolución Biológica , Proteína Morfogenética Ósea 6/fisiología , Mapeo Cromosómico , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Agua Dulce , Regulación del Desarrollo de la Expresión Génica/genética , Ligamiento Genético , Genotipo , Intrones/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo , Diente/embriología
7.
Evol Ecol Res ; 20(1): 107-132, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34899072

RESUMEN

BACKGROUND: Stickleback fish are widely used to study the genetic and ecological basis of phenotypic evolution. Although several major loci have now been identified that contribute to evolutionary differences between wild populations, further study of the phenotypes associated with particular genes and mutations has been limited by the difficulty of generating targeted mutations at precise locations in the stickleback genome. APPROACH AND AIMS: We compared different methods of expressing single-guide RNAs (sgRNAs) and Cas9 activity in fertilized stickleback eggs. We used an easily scored pigmentation gene (SLC24A5) to screen for molecular lesions, phenotypic effects, and possible germline transmission of newly induced alleles. We then used the optimized CRISPR methods to target two major evolutionary loci in sticklebacks, KITLG and EDA. We hypothesized that coding region mutations in the KITLG gene would alter body pigmentation and possibly sex determination, and that mutations in the EDA gene would disrupt the formation of most armor plates, fin rays, spines, teeth, and gill rakers. RESULTS: Targeted deletions were successfully induced at each target locus by co-injecting one-cell stage stickleback embryos with either Cas9 mRNA or Cas9 protein, together with sgRNAs designed to protein-coding exons. Founder animals were typically mosaic for multiple mutations, which they transmitted through the germline at overall rates of 21 to 100%. We found that the copy of KITLG on the X chromosome (KITLGX) has diverged from the KITLG on the Y chromosome (KITLGY). Predicted loss-of-function mutations in the KITLGX gene dramatically altered pigmentation in both external skin and internal organ, but the same was not true for KITLGY mutations. Predicted loss-of-function mutations in either the KITLGX or KITLGY genes did not lead to sex reversal or prevent fertility. Homozygous loss-of-function mutations in the EDA gene led to complete loss of armor plates, severe reduction or loss of most soft rays in the dorsal, anal, and caudal fins, and severe reductions in tooth and gill raker number. In contrast, long dorsal and pelvic spines remained intact in EDA mutant animals, suggesting that common co-segregation of plate loss and spine reduction in wild populations is unlikely to be due to pleiotropic effects of EDA mutations. CONCLUSION: CRISPR-Cas9 approaches can be used to induce germline mutations in key evolutionary loci in sticklebacks. Targeted coding region mutations confirm an important role for KITLG and EDA in skin pigmentation and armor plate reduction, respectively. They also provide new information about the functions of these genes in other body structures.

8.
Development ; 142(14): 2442-51, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26062935

RESUMEN

Teeth are a classic model system of organogenesis, as repeated and reciprocal epithelial and mesenchymal interactions pattern placode formation and outgrowth. Less is known about the developmental and genetic bases of tooth formation and replacement in polyphyodonts, which are vertebrates with continual tooth replacement. Here, we leverage natural variation in the threespine stickleback fish Gasterosteus aculeatus to investigate the genetic basis of tooth development and replacement. We find that two derived freshwater stickleback populations have both convergently evolved more ventral pharyngeal teeth through heritable genetic changes. In both populations, evolved tooth gain manifests late in development. Using pulse-chase vital dye labeling to mark newly forming teeth in adult fish, we find that both high-toothed freshwater populations have accelerated tooth replacement rates relative to low-toothed ancestral marine fish. Despite the similar evolved phenotype of more teeth and an accelerated adult replacement rate, the timing of tooth number divergence and the spatial patterns of newly formed adult teeth are different in the two populations, suggesting distinct developmental mechanisms. Using genome-wide linkage mapping in marine-freshwater F2 genetic crosses, we find that the genetic basis of evolved tooth gain in the two freshwater populations is largely distinct. Together, our results support a model whereby increased tooth number and an accelerated tooth replacement rate have evolved convergently in two independently derived freshwater stickleback populations using largely distinct developmental and genetic mechanisms.


Asunto(s)
Smegmamorpha/embriología , Smegmamorpha/fisiología , Diente/embriología , Animales , Evolución Biológica , Mapeo Cromosómico , Agua Dulce , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Genoma , Estudio de Asociación del Genoma Completo , Genotipo , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo , Diente/fisiología
9.
Nature ; 484(7392): 55-61, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22481358

RESUMEN

Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Genoma/genética , Smegmamorpha/genética , Alaska , Animales , Organismos Acuáticos/genética , Inversión Cromosómica/genética , Cromosomas/genética , Secuencia Conservada/genética , Ecotipo , Femenino , Agua Dulce , Variación Genética/genética , Genómica , Datos de Secuencia Molecular , Agua de Mar , Análisis de Secuencia de ADN
10.
Mol Ecol ; 26(2): 624-638, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27873369

RESUMEN

The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morphological and ecological novelty. Here, we identify quantitative trait loci (QTL) between two trophic specialists in an excellent case study for examining the origins of ecological novelty: a sympatric radiation of pupfishes endemic to San Salvador Island, Bahamas, containing a large-jawed scale-eater and a short-jawed molluscivore with a skeletal nasal protrusion. These specialized niches and trophic traits are unique among over 2000 related species. Measurements of the fitness landscape on San Salvador demonstrate multiple fitness peaks and a larger fitness valley isolating the scale-eater from the putative ancestral intermediate phenotype of the generalist, suggesting that more large-effect QTL should contribute to its unique phenotype. We evaluated this prediction using an F2 intercross between these specialists. We present the first linkage map for pupfishes and detect significant QTL for sex and eight skeletal traits. Large-effect QTL contributed more to enlarged scale-eater jaws than the molluscivore nasal protrusion, consistent with predictions from the adaptive landscape. The microevolutionary genetic architecture of large-effect QTL for oral jaws parallels the exceptional diversification rates of oral jaws within the San Salvador radiation observed over macroevolutionary timescales and may have facilitated exceptional trophic novelty in this system.


Asunto(s)
Especiación Genética , Maxilares/anatomía & histología , Peces Killi/anatomía & histología , Peces Killi/clasificación , Sitios de Carácter Cuantitativo , Adaptación Biológica , Animales , Bahamas , Ecosistema , Islas
11.
Proc Natl Acad Sci U S A ; 111(38): 13912-7, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25205810

RESUMEN

Developmental genetic studies of evolved differences in morphology have led to the hypothesis that cis-regulatory changes often underlie morphological evolution. However, because most of these studies focus on evolved loss of traits, the genetic architecture and possible association with cis-regulatory changes of gain traits are less understood. Here we show that a derived benthic freshwater stickleback population has evolved an approximate twofold gain in ventral pharyngeal tooth number compared with their ancestral marine counterparts. Comparing laboratory-reared developmental time courses of a low-toothed marine population and this high-toothed benthic population reveals that increases in tooth number and tooth plate area and decreases in tooth spacing arise at late juvenile stages. Genome-wide linkage mapping identifies largely separate sets of quantitative trait loci affecting different aspects of dental patterning. One large-effect quantitative trait locus controlling tooth number fine-maps to a genomic region containing an excellent candidate gene, Bone morphogenetic protein 6 (Bmp6). Stickleback Bmp6 is expressed in developing teeth, and no coding changes are found between the high- and low-toothed populations. However, quantitative allele-specific expression assays of Bmp6 in developing teeth in F1 hybrids show that cis-regulatory changes have elevated the relative expression level of the freshwater benthic Bmp6 allele at late, but not early, stages of stickleback development. Collectively, our data support a model where a late-acting cis-regulatory up-regulation of Bmp6 expression underlies a significant increase in tooth number in derived benthic sticklebacks.


Asunto(s)
Alelos , Proteína Morfogenética Ósea 6 , Evolución Molecular , Proteínas de Peces , Elementos Reguladores de la Transcripción , Smegmamorpha , Diente/crecimiento & desarrollo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Mapeo Cromosómico , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Ligamiento Genético , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Datos de Secuencia Molecular , Smegmamorpha/genética , Smegmamorpha/metabolismo
12.
Dev Biol ; 401(2): 310-23, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25732776

RESUMEN

The ligands of the Bone Morphogenetic Protein (BMP) family of developmental signaling molecules are often under the control of complex cis-regulatory modules and play diverse roles in vertebrate development and evolution. Here, we investigated the cis-regulatory control of stickleback Bmp6. We identified a 190bp enhancer ~2.5 kilobases 5' of the Bmp6 gene that recapitulates expression in developing teeth and fins, with a core 72bp sequence that is sufficient for both domains. By testing orthologous enhancers with varying degrees of sequence conservation from outgroup teleosts in transgenic reporter gene assays in sticklebacks and zebrafish, we found that the function of this regulatory element appears to have been conserved for over 250 million years of teleost evolution. We show that a predicted binding site for the TGFß effector Smad3 in this enhancer is required for enhancer function and that pharmacological inhibition of TGFß signaling abolishes enhancer activity and severely reduces endogenous Bmp6 expression. Finally, we used TALENs to disrupt the enhancer in vivo and find that Bmp6 expression is dramatically reduced in teeth and fins, suggesting this enhancer is necessary for expression of the Bmp6 locus. This work identifies a relatively short regulatory sequence that is required for expression in multiple tissues and, combined with previous work, suggests that shared regulatory networks control limb and tooth development.


Asunto(s)
Proteína Morfogenética Ósea 6/genética , Elementos de Facilitación Genéticos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Smegmamorpha/embriología , Pez Cebra/embriología , Aletas de Animales/embriología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Benzamidas/farmacología , Sitios de Unión/genética , Proteína Morfogenética Ósea 6/biosíntesis , Cromosomas Artificiales Bacterianos/genética , Secuencia Conservada/genética , Dioxoles/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Datos de Secuencia Molecular , Odontogénesis/genética , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Alineación de Secuencia , Análisis de Secuencia de ADN , Transducción de Señal/efectos de los fármacos , Proteína smad3/genética , Proteína smad3/metabolismo , Smegmamorpha/genética , Diente/embriología , Pez Cebra/genética
13.
Proc Biol Sci ; 281(1788): 20140822, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24966315

RESUMEN

In convergent evolution, similar phenotypes evolve repeatedly in independent populations, often reflecting adaptation to similar environments. Understanding whether convergent evolution proceeds via similar or different genetic and developmental mechanisms offers insight towards the repeatability and predictability of evolution. Oceanic populations of threespine stickleback fish, Gasterosteus aculeatus, have repeatedly colonized countless freshwater lakes and streams, where new diets lead to morphological adaptations related to feeding. Here, we show that heritable increases in branchial bone length have convergently evolved in two independently derived freshwater stickleback populations. In both populations, an increased bone growth rate in juveniles underlies the convergent adult phenotype, and one population also has a longer cartilage template. Using F2 crosses from these two freshwater populations, we show that two quantitative trait loci (QTL) control branchial bone length at distinct points in development. In both populations, a QTL on chromosome 21 controls bone length throughout juvenile development, and a QTL on chromosome 4 controls bone length only in adults. In addition to these similar developmental profiles, these QTL show similar chromosomal locations in both populations. Our results suggest that sticklebacks have convergently evolved longer branchial bones using similar genetic and developmental programmes in two independently derived populations.


Asunto(s)
Desarrollo Óseo , Branquias/crecimiento & desarrollo , Fenotipo , Sitios de Carácter Cuantitativo , Smegmamorpha/crecimiento & desarrollo , Smegmamorpha/genética , Adaptación Biológica , Animales , Evolución Biológica , Colombia Británica , Femenino , Agua Dulce , Branquias/anatomía & histología , Branquias/embriología , Masculino , Agua de Mar , Smegmamorpha/anatomía & histología , Smegmamorpha/embriología
14.
J Hered ; 105 Suppl 1: 771-81, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25149253

RESUMEN

Discontinuous variation within individuals is increasingly recognized as playing a role in diversification and ecological speciation. This study is part of an effort to investigate the molecular genetic underpinnings of adaptive radiation in Hawaiian spiders (genus Tetragnatha). This radiation is found throughout the Hawaiian Islands, showing a common pattern of evolutionary progression from older to younger islands. Moreover, the species are characterized by repeated evolution of similar ecomorphs that can be recognized on the basis of color--Green, Maroon, Large Brown, and Small Brown. However, 2 species (including T. kauaiensis from Kauai) are polyphenic, changing from 1 ecomorph (Green) to another (Maroon) at a specific developmental period. The current study focuses on the age-associated color change in the early stages of the radiation to determine whether this ancestral flexibility in phenotype may have translated into diversification of more derived taxa. We conducted a comparative analysis of transcriptome data (expressed genes) from the Maroon morph of T. kauaiensis and T. perreirai (Oahu), which exhibits a single fixed ecomorph (Maroon). Over 70 million sequence reads were generated using Illumina sequencing of messenger RNA. Using reciprocal best hit BLAST searches, 9027 orthologous genes were identified, of which 32 showed signatures of positive selection between the 2 taxa and may be involved in the loss of the ancestral developmental polyphenism and associated switch to separate monophenic ecomorphs. These results provide critical groundwork that will allow us to advance our understanding of the genomic elements associated with adaptive radiations.


Asunto(s)
Evolución Biológica , Pigmentación/fisiología , Arañas/clasificación , Arañas/genética , Adaptación Fisiológica , Factores de Edad , Animales , Especiación Genética , Hawaii , Sistemas de Lectura Abierta , Fenotipo , Pigmentación/genética , Arañas/fisiología , Transcriptoma
15.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37333213

RESUMEN

Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology that also provides an opportunity to uncover new genes and regulatory networks with potential clinical relevance. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island in the Bahamas. We confirmed the loss of a putative Sry transcription factor binding site in the upstream region of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage and premaxilla using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel function for Galr2 in craniofacial development and jaw elongation by exposing embryos to drugs that inhibit Galr2 activity. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a postulated Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.

16.
Genome Biol Evol ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35679302

RESUMEN

The variegated toad-headed agama, Phrynocephalus versicolor, lives in the arid landscape of the Chinese Gobi Desert. We analyzed populations from three different locations which vary in substrate color and altitude: Heishankou (HSK), Guazhou County (GZ), and Ejin Banner (EJN). The substrate color is either light-yellow (GZ-y), yellow (EJN-y), or black (HSK-b); the corresponding lizard population colors largely match their substrate in the degree of melanism. We assembled the P. versicolor genome and sequenced over 90 individuals from the three different populations. Genetic divergence between populations corresponds to their geographic distribution. We inferred the genetic relationships among these populations and used selection scans and differential expression to identify genes that show signatures of selection. Slc2a11 and akap12, among other genes, are highly differentiated and may be responsible for pigment adaptation to substrate color in P. versicolor.


Asunto(s)
Genoma Mitocondrial , Lagartos , Animales , Humanos , Lagartos/genética , Metagenómica , ARN de Transferencia/genética , Arena
17.
Evodevo ; 12(1): 4, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766133

RESUMEN

BACKGROUND: Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS: In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS: We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.

18.
Genetics ; 219(4)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849839

RESUMEN

Mutations in enhancers have been shown to often underlie natural variation but the evolved differences in enhancer activity can be difficult to identify in vivo. Threespine sticklebacks (Gasterosteus aculeatus) are a robust system for studying enhancer evolution due to abundant natural genetic variation, a diversity of evolved phenotypes between ancestral marine and derived freshwater forms, and the tractability of transgenic techniques. Previous work identified a series of polymorphisms within an intronic enhancer of the Bone morphogenetic protein 6 (Bmp6) gene that are associated with evolved tooth gain, a derived increase in freshwater tooth number that arises late in development. Here, we use a bicistronic reporter construct containing a genetic insulator and a pair of reciprocal two-color transgenic reporter lines to compare enhancer activity of marine and freshwater alleles of this enhancer. In older fish, the two alleles drive partially overlapping expression in both mesenchyme and epithelium of developing teeth, but the freshwater enhancer drives a reduced mesenchymal domain and a larger epithelial domain relative to the marine enhancer. In younger fish, these spatial shifts in enhancer activity are less pronounced. Comparing Bmp6 expression by in situ hybridization in developing teeth of marine and freshwater fish reveals similar evolved spatial shifts in gene expression. Together, these data support a model in which the polymorphisms within this enhancer underlie evolved tooth gain by shifting the spatial expression of Bmp6 during tooth development, and provide a general strategy to identify spatial differences in enhancer activity in vivo.


Asunto(s)
Evolución Biológica , Proteína Morfogenética Ósea 6/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Smegmamorpha/genética , Diente/crecimiento & desarrollo , Aletas de Animales/metabolismo , Animales , Organismos Acuáticos , Epitelio/embriología , Agua Dulce , Perfilación de la Expresión Génica , Genes Reporteros , Hibridación in Situ , Mesodermo/embriología , Smegmamorpha/embriología , Smegmamorpha/crecimiento & desarrollo , Diente/embriología , Transgenes
19.
Integr Comp Biol ; 60(3): 563-580, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533826

RESUMEN

Teeth are a model system for integrating developmental genomics, functional morphology, and evolution. We are at the cusp of being able to address many open issues in comparative tooth biology and we outline several of these newly tractable and exciting research directions. Like never before, technological advances and methodological approaches are allowing us to investigate the developmental machinery of vertebrates and discover both conserved and excitingly novel mechanisms of diversification. Additionally, studies of the great diversity of soft tissues, replacement teeth, and non-trophic functions of teeth are providing new insights into dental diversity. Finally, we highlight several emerging model groups of organisms that are at the forefront of increasing our appreciation of the mechanisms underlying tooth diversification.


Asunto(s)
Evolución Biológica , Diente , Vertebrados , Animales , Diente/anatomía & histología , Diente/crecimiento & desarrollo , Diente/fisiología , Vertebrados/anatomía & histología , Vertebrados/genética , Vertebrados/crecimiento & desarrollo , Vertebrados/fisiología
20.
Evolution ; 62(1): 76-85, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18005154

RESUMEN

The distribution of effect sizes of genes underlying adaptation is unknown (Orr 2005). Are suites of traits that diverged under natural selection controlled by a few pleiotropic genes of large effect (major genes model), by many independently acting genes of small effect (infinitesimal model), or by a combination, with frequency inversely related to effect size (geometric model)? To address this we carried out a quantitative trait loci (QTL) study of a suite of 54 position traits describing body shapes of two threespine stickleback species: an ancestral Pacific marine form and a highly derived benthic species inhabiting a geologically young lake. About half of the 26 detected QTL affected just one coordinate and had small net effects, but several genomic regions affected multiple aspects of shape and had large net effects. The distribution of effect sizes followed the gamma distribution, as predicted by the geometric model of adaptation when detection limits are taken into account. The sex-determining chromosome region had the largest effect of any QTL. Ancestral sexual dimorphism was similar to the direction of divergence, and was largely eliminated during freshwater adaptation, suggesting that sex differences may provide variation upon which selection can act. Several shape QTL are linked to Eda, a major gene responsible for reduction of lateral body armor in freshwater. Our results are consistent with predictions of the geometric model of adaptation. Shape evolution in stickleback results from a few genes with large and possibly widespread effects and multiple genes of smaller effect.


Asunto(s)
Adaptación Fisiológica/genética , Tamaño Corporal/genética , Smegmamorpha/anatomía & histología , Smegmamorpha/genética , Animales , Femenino , Regulación de la Expresión Génica , Hibridación Genética , Masculino , Sitios de Carácter Cuantitativo/genética , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA