Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(10): 2483-2501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532289

RESUMEN

Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Animales , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones Endogámicos C57BL , Humanos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Masculino
2.
J Hepatol ; 79(2): 492-505, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36889360

RESUMEN

Since the initial development of the exposome concept, much effort has been devoted to the characterisation of the exposome through analytical, epidemiological, and toxicological/mechanistic studies. There is now an urgent need to link the exposome to human diseases and to include exposomics in the characterisation of environment-linked pathologies together with genomics and other omics. Liver diseases are particularly well suited for such studies since major functions of the liver include the detection, detoxification, and elimination of xenobiotics, as well as inflammatory responses. It is well known that several liver diseases are associated with i) addictive behaviours such as alcohol consumption, smoking, and to a certain extent dietary imbalance and obesity, ii) viral and parasitic infections, and iii) exposure to toxins and occupational chemicals. Recent studies indicate that environmental exposures are also significantly associated with liver diseases, and these include air pollution (particulate matter and volatile chemicals), contaminants such as polyaromatic hydrocarbons, bisphenol A and per-and poly-fluorinated substances, and physical stressors such as radiation. Furthermore, microbial metabolites and the "gut-liver" axis play a major role in liver diseases. Exposomics is poised to play a major role in the field of liver pathology. Methodological advances such as the exposomics-metabolomics framework, the determination of risk factors' genomic and epigenomic signatures, and cross-species biological pathway analysis should further delineate the impact of the exposome on the liver, opening the way for improved prevention, as well as the identification of new biomarkers of exposure and effects, and additional therapeutic targets.


Asunto(s)
Contaminación del Aire , Exposoma , Hepatopatías , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Hepatopatías/etiología
3.
J Neuroinflammation ; 20(1): 170, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480114

RESUMEN

INTRODUCTION: Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson's disease (PD) in small-scale retrospective case-control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case-control study within a large European prospective cohort. METHODS: A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. RESULTS: Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98-2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09-2.18). CONCLUSION: The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals.


Asunto(s)
Lipopolisacáridos , Enfermedad de Parkinson , Masculino , Humanos , Femenino , Estudios de Casos y Controles , Sobrepeso , Enfermedad de Parkinson/epidemiología , Estudios Prospectivos , Estudios Retrospectivos , Proteínas de Fase Aguda
4.
Proc Natl Acad Sci U S A ; 117(42): 26438-26447, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33024014

RESUMEN

Metabolic dysfunction occurs in many age-related neurodegenerative diseases, yet its role in disease etiology remains poorly understood. We recently discovered a potential causal link between the branched-chain amino acid transferase BCAT-1 and the neurodegenerative movement disorder Parkinson's disease (PD). RNAi-mediated knockdown of Caenorhabditis elegans bcat-1 is known to recapitulate PD-like features, including progressive motor deficits and neurodegeneration with age, yet the underlying mechanisms have remained unknown. Using transcriptomic, metabolomic, and imaging approaches, we show here that bcat-1 knockdown increases mitochondrial respiration and induces oxidative damage in neurons through mammalian target of rapamycin-independent mechanisms. Increased mitochondrial respiration, or "mitochondrial hyperactivity," is required for bcat-1(RNAi) neurotoxicity. Moreover, we show that post-disease-onset administration of the type 2 diabetes medication metformin reduces mitochondrial respiration to control levels and significantly improves both motor function and neuronal viability. Taken together, our findings suggest that mitochondrial hyperactivity may be an early event in the pathogenesis of PD, and that strategies aimed at reducing mitochondrial respiration may constitute a surprising new avenue for PD treatment.


Asunto(s)
Metformina/farmacología , Mitocondrias/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Metformina/metabolismo , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Fenotipo
5.
Annu Rev Pharmacol Toxicol ; 59: 107-127, 2019 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-30095351

RESUMEN

Derived from the term exposure, the exposome is an omic-scale characterization of the nongenetic drivers of health and disease. With the genome, it defines the phenome of an individual. The measurement of complex environmental factors that exert pressure on our health has not kept pace with genomics and historically has not provided a similar level of resolution. Emerging technologies make it possible to obtain detailed information on drugs, toxicants, pollutants, nutrients, and physical and psychological stressors on an omic scale. These forces can also be assessed at systems and network levels, providing a framework for advances in pharmacology and toxicology. The exposome paradigm can improve the analysis of drug interactions and detection of adverse effects of drugs and toxicants and provide data on biological responses to exposures. The comprehensive model can provide data at the individual level for precision medicine, group level for clinical trials, and population level for public health.


Asunto(s)
Genoma/genética , Animales , Exposición a Riesgos Ambientales/efectos adversos , Exposoma , Genómica/métodos , Humanos , Medicina de Precisión
6.
Drug Metab Dispos ; 50(9): 1182-1189, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35752443

RESUMEN

Precision medicine and exposomics require methods to assess xenobiotic metabolism in human metabolomic analyses, including the identification of known and undocumented drug and chemical exposures as well as their metabolites. Recent work demonstrated the use of high-throughput generation of xenobiotic metabolites with human liver S-9 fractions for their detection in human plasma and urine. Here, we tested whether a panel of lentivirally transduced human hepatoma cell lines (Huh7) that express individual cytochrome P450 (P450) enzymes could be used to generate P450-specific metabolites in a high-throughput manner, while simultaneously identifying the enzymes responsible. Cell-line activities were verified using P450-specific probe substrates. To increase analytical throughput, we used a pooling strategy where 36 chemicals were grouped into 12 unique mixtures, each mixture containing 6 randomly selected compounds, and each compound being present in two separate mixtures. Each mixture was incubated with 8 different P450 cell lines for 0 and 2 hours and extracts were analyzed using liquid chromatography-high-resolution mass spectrometry. Cell lines selectively metabolized test substrates, e.g., pazopanib, bupropion, and ß-naphthoflavone with expected substrate-enzyme specificities. Predicted metabolites from the remaining 33 compounds as well as many unidentified m/z features were detected. We also showed that a specific bupropion metabolite generated by CYP2B6 cells, but not detected in the S9 system, was identified in human samples. Our data show that the chemical mixtures approach accelerated characterization of xenobiotic chemical space, while simultaneously identifying enzyme sources that can be used for scalable generation of metabolites for their identification in human metabolomic analyses. SIGNIFICANCE STATEMENT: High-resolution mass spectrometry (HRMS) enables the detection of exposures to drugs and other xenobiotics in human samples, but chemical identification can be difficult for several reasons. This paper demonstrates the utility of a panel of engineered cytochrome P450-expressing hepatoma cells in a scalable workflow for production of xenobiotic metabolites, which will facilitate their use as surrogate standards to validate xenobiotic detection by HRMS in human metabolomic studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Bupropión , Línea Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Xenobióticos
7.
J Neurochem ; 158(4): 960-979, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991113

RESUMEN

In Parkinson's disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of H2 O2 and reduced glutathione levels. In addition, TH-HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4-dihydroxyphenylacetaldehyde and 5-S-cysteinyl-dopamine and were more susceptible than wild-type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity.


Asunto(s)
Anfetamina/farmacología , Catecolaminas/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Estrés Oxidativo , Tirosina 3-Monooxigenasa/metabolismo , Ácido 3,4-Dihidroxifenilacético/análogos & derivados , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Dopamina/análogos & derivados , Dopamina/metabolismo , Femenino , Dosificación de Gen , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Tirosina 3-Monooxigenasa/genética
8.
Acta Neuropathol ; 142(1): 139-158, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895869

RESUMEN

ApoE4 enhances Tau neurotoxicity and promotes the early onset of AD. Pretangle Tau in the noradrenergic locus coeruleus (LC) is the earliest detectable AD-like pathology in the human brain. However, a direct relationship between ApoE4 and Tau in the LC has not been identified. Here we show that ApoE4 selectively binds to the vesicular monoamine transporter 2 (VMAT2) and inhibits neurotransmitter uptake. The exclusion of norepinephrine (NE) from synaptic vesicles leads to its oxidation into the toxic metabolite 3,4-dihydroxyphenyl glycolaldehyde (DOPEGAL), which subsequently activates cleavage of Tau at N368 by asparagine endopeptidase (AEP) and triggers LC neurodegeneration. Our data reveal that ApoE4 boosts Tau neurotoxicity via VMAT2 inhibition, reduces hippocampal volume, and induces cognitive dysfunction in an AEP- and Tau N368-dependent manner, while conversely ApoE3 binds Tau and protects it from cleavage. Thus, ApoE4 exacerbates Tau neurotoxicity by increasing VMAT2 vesicle leakage and facilitating AEP-mediated Tau proteolytic cleavage in the LC via DOPEGAL.


Asunto(s)
Enfermedad de Alzheimer/patología , Apolipoproteína E4/farmacología , Locus Coeruleus/patología , Tauopatías/patología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Anciano , Enfermedad de Alzheimer/psicología , Animales , Trastornos del Conocimiento/psicología , Femenino , Hipocampo/patología , Humanos , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Norepinefrina/metabolismo , Vesículas Sinápticas/metabolismo , Tauopatías/psicología
9.
Chem Res Toxicol ; 34(5): 1256-1264, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33378168

RESUMEN

Impairments in the vesicular packaging of dopamine result in an accumulation of dopamine in the cytosol. Cytosolic dopamine is vulnerable to two metabolic processes-enzymatic catabolism and enzymatic- or auto-oxidation-that form toxic metabolites and generate reactive oxygen species. Alterations in the expression or activity of the vesicular monoamine transporter 2 (VMAT2), which transports monoamines such as dopamine from the cytosol into the synaptic vesicle, result in dysregulated dopamine packaging. Here, we developed a series of assays using the fluorescent false neurotransmitter 206 (FFN206) to visualize VMAT2-mediated vesicular packaging at baseline and following pharmacological and toxicological manipulations. As a proof of principle, we observed a significant reduction in vesicular FFN206 packaging after treatment with the VMAT2 inhibitors reserpine (IC50: 73.1 nM), tetrabenazine (IC50: 30.4 nM), methamphetamine (IC50: 2.4 µM), and methylphenidate (IC50: 94.3 µM). We then applied the assay to investigate the consequences on vesicular packaging by environmental toxicants including the pesticides paraquat, rotenone, and chlorpyrifos, as well as the halogenated compounds unichlor, perfluorooctanesulfonic acid, Paroil, Aroclor 1260, and hexabromocyclododecane. Several of the environmental toxicants showed minor impairment of the vesicular FFN206 loading, suggesting that the toxicants are weak VMAT2 inhibitors at the concentrations tested. The assay presented here can be applied to investigate the effect of additional pharmacological compounds and environmental toxicants on vesicular function, which will provide insight into how exposures to such factors are involved in the pathogenesis of monoaminergic diseases such as Parkinson's disease, and the assay can be used to identify pharmacological agents that influence VMAT2 activity.


Asunto(s)
Neurotransmisores/farmacología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Células Cultivadas , Células HEK293 , Humanos , Microscopía Confocal , Microscopía Fluorescente , Estructura Molecular , Neurotransmisores/química , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(11): E2253-E2262, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28246328

RESUMEN

Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


Asunto(s)
Dopamina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Ganglios Basales/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Eliminación de Gen , Expresión Génica , Humanos , Locomoción , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Nicotina/metabolismo , Nicotina/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Unión Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
11.
Environ Res ; 172: 182-193, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782538

RESUMEN

Although polychlorinated biphenyls and polybrominated biphenyls are no longer manufactured the United States, biomonitoring in human populations show that exposure to these pollutants persist in human tissues. The objective of this study was to identify metabolic variations associated with exposure to 2,2'4,4',5,5'-hexabromobiphenyl (PBB-153) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB-153) in two generations of participants enrolled in the Michigan PBB Registry (http://pbbregistry.emory.edu/). Untargeted, high-resolution metabolomic profiling of plasma collected from 156 individuals was completed using liquid chromatography with high-resolution mass spectrometry. PBB-153 and PCB-153 levels were measured in the same individuals using targeted gas chromatography-tandem mass spectrometry and tested for dose-dependent correlation with the metabolome. Biological response to these exposures were evaluated using identified endogenous metabolites and pathway enrichment. When compared to lipid-adjusted concentrations for adults in the National Health and Nutrition Examination Survey (NHANES) for years 2003-2004, PCB-153 levels were consistent with similarly aged individuals, whereas PBB-153 concentrations were elevated (p<0.0001) in participants enrolled in the Michigan PBB Registry. Metabolic alterations were correlated with PBB-153 and PCB-153 in both generations of participants, and included changes in pathways related to catecholamine metabolism, cellular respiration, essential fatty acids, lipids and polyamine metabolism. These pathways were consistent with pathophysiological changes observed in neurodegenerative disease and included previously identified metabolomic markers of Parkinson's disease. To determine if the metabolic alterations detected in this study are replicated other cohorts, we evaluated correlation of PBB-153 and PCB-153 with plasma fatty acids measured in NHANES. Both pollutants showed similar associations with fatty acids previously linked to PCB exposure. Thus, the results from this study show metabolic alterations correlated with PBB-153 and PCB-153 exposure can be detected in human populations and are consistent with health outcomes previously reported in epidemiological and mechanistic studies.


Asunto(s)
Contaminantes Ambientales , Metaboloma , Bifenilos Polibrominados , Bifenilos Policlorados , Adulto , Anciano , Contaminantes Ambientales/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Michigan , Enfermedades Neurodegenerativas/fisiopatología , Encuestas Nutricionales , Bifenilos Polibrominados/metabolismo , Bifenilos Policlorados/metabolismo , Sistema de Registros
12.
Anal Chem ; 90(6): 3786-3792, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29425024

RESUMEN

Interstitial fluid (ISF) surrounds the cells and tissues of the body. Since ISF has molecular components similar to plasma, as well as compounds produced locally in tissues, it may be a valuable source of biomarkers for diagnostics and monitoring. However, there has not been a comprehensive study to determine the metabolite composition of ISF and to compare it to plasma. In this study, the metabolome of suction blister fluid (SBF), which largely consists of ISF, collected from 10 human volunteers was analyzed using untargeted high-resolution metabolomics (HRM). A wide range of metabolites were detected in SBF, including amino acids, lipids, nucleotides, and compounds of exogenous origin. Various systemic and skin-derived metabolite biomarkers were elevated or found uniquely in SBF, and many other metabolites of clinical and physiological significance were well correlated between SBF and plasma. In sum, using untargeted HRM profiling, this study shows that SBF can be a valuable source of information about metabolites relevant to human health.


Asunto(s)
Líquido Extracelular/metabolismo , Metaboloma , Metabolómica/métodos , Manejo de Especímenes/métodos , Succión/métodos , Biomarcadores/análisis , Biomarcadores/sangre , Biomarcadores/metabolismo , Líquido Extracelular/química , Humanos
13.
J Neurosci Res ; 96(7): 1324-1335, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29577359

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are ion channels comprising tetrameric assemblies of GluN1 and GluN2 receptor subunits that mediate excitatory neurotransmission in the central nervous system. Of the four different GluN2 subunits, the GluN2D subunit-containing NMDARs have been suggested as a target for antiparkinsonian therapy because of their expression pattern in some of the basal ganglia nuclei that show abnormal firing patterns in the parkinsonian state, specifically the subthalamic nucleus (STN). In this study, we demonstrate that blockade of NMDARs altered spike firing in the STN in a male nonhuman primate that had been rendered parkinsonian by treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In accompanying experiments in male rodents, we found that GluN2D-NMDAR expression in the STN was reduced in acutely or chronically dopamine-depleted animals. Taken together, our data suggest that blockade of NMDARs in the STN may be a viable antiparkinsonian strategy, but that the ultimate success of this approach may be complicated by parkinsonism-associated changes in NMDAR expression in the STN.


Asunto(s)
2-Amino-5-fosfonovalerato/farmacología , Trastornos Parkinsonianos/enzimología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Núcleo Subtalámico/enzimología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Potenciales de Acción/fisiología , Animales , Bovinos , Antagonistas de Aminoácidos Excitadores/farmacología , Intoxicación por MPTP , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Subtalámico/efectos de los fármacos , Núcleo Subtalámico/patología , Transmisión Sináptica/fisiología
14.
BMC Public Health ; 18(1): 260, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448939

RESUMEN

The final meeting of the EXPOsOMICS project "Final Policy Workshop and Stakeholder Consultation" took place 28-29 March 2017 to present the main results of the project and discuss their implications both for future research and for regulatory and policy activities. This paper summarizes presentations and discussions at the meeting related with the main results and advances in exposome research achieved through the EXPOsOMICS project; on other parallel research initiatives on the study of the exposome in Europe and in the United States and their complementarity to EXPOsOMICS; lessons learned from these early studies on the exposome and how they may shape the future of research on environmental exposure assessment; and finally the broader implications of exposome research for risk assessment and policy development on environmental exposures. The main results of EXPOsOMICS in relation to studies of the external exposome and internal exposome in relation to both air pollution and water contaminants were presented as well as new technologies for environmental health research (adductomics) and advances in statistical methods. Although exposome research strengthens the scientific basis for policy development, there is a need in terms of showing added value for public health to: improve communication of research results to non-scientific audiences; target research to the broader landscape of societal challenges; and draw applicable conclusions. Priorities for future work include the development and standardization of methodologies and technologies for assessing the external and internal exposome, improved data sharing and integration, and the demonstration of the added value of exposome science over conventional approaches in answering priority policy questions.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Salud Ambiental , Política de Salud , Contaminación del Aire/efectos adversos , Investigación Biomédica , Congresos como Asunto , Europa (Continente) , Humanos , Medición de Riesgo , Participación de los Interesados , Contaminación del Agua/efectos adversos
15.
Molecules ; 23(10)2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287800

RESUMEN

In traditional Asian medicinal systems, preparations of the root and stem bark of Magnolia species are widely used to treat anxiety and other nervous disturbances. The biphenyl-type neolignans honokiol and magnolol are the main constituents of Magnolia bark extracts. In the central nervous system, Magnolia bark preparations that contain honokiol are thought to primarily interact with γ-aminobutyric acid A (GABAA) receptors. However, stress responses inherently involve the noradrenergic system, which has not been investigated in the pharmacological mechanism of honokiol. We present here interactions of honokiol and other synthesized biphenyl-type neolignans and diphenylmethane analogs with the norepinephrine transporter (NET), which is responsible for the synaptic clearance of norepinephrine and the target of many anxiolytics. Of the synthesized compounds, 16 are new chemical entities, which are fully characterized. The 52 compounds tested show mild, non-potent interactions with NET (IC50 > 100 µM). It is thus likely that the observed anxiolytic effects of, e.g., Magnolia preparations, are not due to direct interaction with the noradrenergic system.


Asunto(s)
Neuronas Adrenérgicas/efectos de los fármacos , Ansiolíticos/farmacología , Sistema Nervioso Central/efectos de los fármacos , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/efectos de los fármacos , Extractos Vegetales/farmacología , Ansiolíticos/química , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Sistema Nervioso Central/metabolismo , Células HEK293 , Humanos , Lignanos/química , Lignanos/farmacología , Magnolia/química , Norepinefrina/metabolismo , Corteza de la Planta/química , Extractos Vegetales/química , Receptores de GABA-A/efectos de los fármacos
16.
Hum Mol Genet ; 24(18): 5299-312, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26123485

RESUMEN

Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Mutación Missense , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Edad , Animales , Conducta Animal , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Transgénicos , Actividad Motora , Degeneración Nerviosa/genética , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Eur J Neurosci ; 45(1): 20-33, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27520881

RESUMEN

Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Terminales Presinápticos/metabolismo , Animales , Humanos , Mesencéfalo/metabolismo , Transmisión Sináptica/fisiología
18.
Proc Natl Acad Sci U S A ; 111(27): 9977-82, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24979780

RESUMEN

Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.


Asunto(s)
Dopamina/metabolismo , Trastornos Parkinsonianos/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/fisiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Conducta Animal , Cromosomas Artificiales Bacterianos , Cuerpo Estriado/metabolismo , Ratones , Ratones Transgénicos , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Proteínas de Transporte Vesicular de Monoaminas/genética
20.
FASEB J ; 29(5): 1960-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630971

RESUMEN

Attention-deficit hyperactivity disorder (ADHD) is estimated to affect 8-12% of school-age children worldwide. ADHD is a complex disorder with significant genetic contributions. However, no single gene has been linked to a significant percentage of cases, suggesting that environmental factors may contribute to ADHD. Here, we used behavioral, molecular, and neurochemical techniques to characterize the effects of developmental exposure to the pyrethroid pesticide deltamethrin. We also used epidemiologic methods to determine whether there is an association between pyrethroid exposure and diagnosis of ADHD. Mice exposed to the pyrethroid pesticide deltamethrin during development exhibit several features reminiscent of ADHD, including elevated dopamine transporter (DAT) levels, hyperactivity, working memory and attention deficits, and impulsive-like behavior. Increased DAT and D1 dopamine receptor levels appear to be responsible for the behavioral deficits. Epidemiologic data reveal that children aged 6-15 with detectable levels of pyrethroid metabolites in their urine were more than twice as likely to be diagnosed with ADHD. Our epidemiologic finding, combined with the recapitulation of ADHD behavior in pesticide-treated mice, provides a mechanistic basis to suggest that developmental pyrethroid exposure is a risk factor for ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/patología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Nitrilos/toxicidad , Piretrinas/orina , Receptores de Dopamina D1/metabolismo , Adolescente , Animales , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Reacción de Prevención/efectos de los fármacos , Western Blotting , Estudios de Casos y Controles , Niño , Cromatografía Líquida de Alta Presión , Estudios Transversales , Femenino , Humanos , Insecticidas/toxicidad , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Piretrinas/efectos adversos , Piretrinas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA