Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 684
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(8000): 720-722, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355996
2.
Proc Natl Acad Sci U S A ; 119(49): e2212630119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442134

RESUMEN

In the primary step of natural light harvesting, the solar photon energy is captured in a photoexcited electron-hole pair, or an exciton, in chlorophyll. Its conversion to chemical potential occurs in the special pair reaction center, which is reached by downhill ultrafast excited-state energy transport through a network of chromophores. Being inherently quantum, transport could in principle occur via a matter wave, with vast implications for efficiency. How long a matter wave remains coherent is determined by the intensity by which the exciton is disturbed by the noisy biological environment. The stronger this is, the stronger the electronic coupling between chromophores must be to overcome the fluctuations and phase shifts. The current consensus is that under physiological conditions, quantum coherence vanishes on the 10-fs time scale, rendering it irrelevant for the observed picosecond transfer. Yet, at low-enough temperature, quantum coherence should in principle be present. Here, we reveal the onset of longer-lived electronic coherence at extremely low temperatures of ∼20 K. Using two-dimensional electronic spectroscopy, we determine the exciton coherence times in the Fenna-Matthew-Olson complex over an extensive temperature range. At 20 K, coherence persists out to 200 fs (close to the antenna) and marginally up to 500 fs at the reaction center. It decays markedly faster with modest increases in temperature to become irrelevant above 150 K. At low temperature, the fragile electronic coherence can be separated from the robust vibrational coherence, using a rigorous theoretical analysis. We believe that by this generic principle, light harvesting becomes robust against otherwise fragile quantum effects.


Asunto(s)
Frío , Electrónica , Temperatura , Fenómenos Físicos , Clorofila
3.
J Struct Biol ; 216(2): 108073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432598

RESUMEN

Cryo-electron microscopy has become a powerful tool to determine three-dimensional (3D) structures of rigid biological macromolecules from noisy micrographs with single-particle reconstruction. Recently, deep neural networks, e.g., CryoDRGN, have demonstrated conformational and compositional heterogeneity of complexes. However, the lack of ground-truth conformations poses a challenge to assess the performance of heterogeneity analysis methods. In this work, variational autoencoders (VAE) with three types of deep generative priors were learned for latent variable inference and heterogeneous 3D reconstruction via Bayesian inference. More specifically, VAEs with "Variational Mixture of Posteriors" priors (VampPrior-SPR), non-parametric exemplar-based priors (ExemplarPrior-SPR) and priors from latent score-based generative models (LSGM-SPR) were quantitatively compared with CryoDRGN. We built four simulated datasets composed of hypothetical continuous conformation or discrete states of the hERG K + channel. Empirical and quantitative comparisons of inferred latent representations were performed with affine-transformation-based metrics. These models with more informative priors gave better regularized, interpretable factorized latent representations with better conserved pairwise distances, less deformed latent distributions and lower within-cluster variances. They were also tested on experimental datasets to resolve compositional and conformational heterogeneity (50S ribosome assembly, cowpea chlorotic mottle virus, and pre-catalytic spliceosome) with comparable high resolution. Codes and data are available: https://github.com/benjamin3344/DGP-SPR.


Asunto(s)
Teorema de Bayes , Microscopía por Crioelectrón , Imagenología Tridimensional , Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura
4.
Conserv Biol ; : e14296, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770838

RESUMEN

Marine protected areas (MPAs) globally serve conservation and fisheries management goals, generating positive effects in some marine ecosystems. Surf zones and sandy beaches, critical ecotones bridging land and sea, play a pivotal role in the life cycles of numerous fish species and serve as prime areas for subsistence and recreational fishing. Despite their significance, these areas remain understudied when evaluating the effects of MPAs. We compared surf zone fish assemblages inside and outside MPAs across 3 bioregions in California (USA). Using seines and baited remote underwater videos (BRUVs), we found differences in surf zone fish inside and outside MPAs in one region. Inside south region MPAs, we observed higher abundance (Tukey's honest significant difference [HSD] = 0.83, p = 0.0001) and richness (HSD = 0.22, p = 0.0001) in BRUVs and greater biomass (HSD = 0.32, p = 0.0002) in seine surveys compared with reference sites. Selected live-bearing, fished taxa were positively affected by MPAs. Elasmobranchs displayed greater abundance in BRUV surveys and higher biomass in seine surveys inside south region MPAs (HSD = 0.35, p = 0.0003 and HSD = 0.23, p = 0.008, respectively). Although we observed no overall MPA signal for Embiotocidae, abundances of juvenile and large adult barred surfperch (Amphistichus argenteus), the most abundant fished species, were higher inside MPAs (K-S test D = 0.19, p < 0.0001). Influence of habitat characteristics on MPA performance indicated surf zone width was positively associated with fish abundance and biomass but negatively associated with richness. The south region had the largest positive effect size on all MPA performance metrics. Our findings underscored the variability in species richness and composition across regions and survey methods that significantly affected differences observed inside and outside MPAs. A comprehensive assessment of MPA performance should consider specific taxa, their distribution, and the effects of habitat factors and geography.


Evaluación de la influencia de las áreas marinas protegidas sobre los peces de la zona de rompientes Resumen Las áreas marinas protegidas (AMP) cumplen los objetivos de conservación y manejo de pesquerías a nivel mundial, lo que genera efectos positivos en algunos ecosistemas marinos. Las zonas de rompientes y las playas arenosas, ecotonos importantes que conectan la tierra con el mar, tienen un papel esencial en el ciclo de vida de varios peces y fungen como áreas óptimas para la pesca recreativa y de sustento. A pesar de su importancia, estas áreas están poco estudiadas con respecto a la evaluación del efecto de las AMP. Comparamos la composición de peces del área de rompientes dentro y fuera de las AMP de tres bioregiones de California, EUA. Usamos chinchorros y videos submarinos con carnada (BRUVs) y descubrimos diferencias en los peces de la zona de rompientes dentro y fuera de las AMP en una región. Dentro de las AMP de la región sur observamos una mayor abundancia (diferencia significativa honesta de Tukey [DSH]  =  0.83, p = 0.0001) y riqueza (DSH  =  0.22, p = 0.0001) en los BRUV y una mayor biomasa (DSH  =  0.32, p = 0.0002) en los censos con chinchorro en comparación con los sitios de referencia. Los taxones seleccionados de peces de sustento fueron afectados de manera positiva por las AMP. Los elasmobranquios mostraron una mayor abundancia en los BRUV y una mayor biomasa en los censos con chinchorro dentro de las AMP de la región sur (DSH  =  0.35, p = 0.0003 y DSH  =  0.23, p = 0.008, respectivamente). Aunque no observamos una señal generalizada de las AMP para la familia Embiotocidae, la abundancia de Amphistichus argenteus juveniles y adultos, la especie pescada más abundante, fue mayor dentro de las AMP (prueba K­S D  =  0.19, p < 0.0001). La influencia de las características del hábitat sobre el desempeño de las AMP indicó que el ancho de la zona de rompientes está asociado de forma positiva con la abundancia y biomasa de los peces, pero de forma negativa con la riqueza. La región sur tuvo el mayor tamaño de efecto positivo sobre todas las medidas de desempeño de las AMP. Nuestros hallazgos destacan la variabilidad en la riqueza y composición de especies en todas las regiones y los censos que afectan significativamente las diferencias observadas dentro y fuera de las AMP. Una evaluación completa del desempeño de las AMP debe considerar taxones específicos, su distribución y el efecto de los factores de hábitat y la geografía.

5.
J Chem Phys ; 160(10)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38456529

RESUMEN

We propose a quantum tomography (QT) approach to retrieve the temporally evolving reduced density matrix in electronic state basis, where the populations and coherence between the ground state and excited state are reconstructed from the ultrafast electron diffraction signal. In order to showcase the capability of the proposed QT approach, we simulate the nuclear wavepacket dynamics and ultrafast electron diffraction of photoexcited pyrrole molecules using the ab initio quantum chemical CASSCF method. From the simulated time-resolved diffraction data, we retrieve the evolving density matrix in a crude diabatic representation basis and reveal the symmetry of the excited pyrrole wavepacket. Our QT approach opens the route to make a quantum version of "molecular movie" that covers the electronic degree of freedom and equips ultrafast electron diffraction with the power to reveal the coherence between electronic states, relaxation, and dynamics of population transfer.

6.
J Chem Phys ; 159(4)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37493126

RESUMEN

Inferring transient molecular structural dynamics from diffraction data is an ambiguous task that often requires different approximation methods. In this paper, we present an attempt to tackle this problem using machine learning. Although most recent applications of machine learning for the analysis of diffraction images apply only a single neural network to an experimental dataset and train it on the task of prediction, our approach utilizes an additional generator network trained on both synthetic and experimental data. Our network converts experimental data into idealized diffraction patterns from which information is extracted via a convolutional neural network trained on synthetic data only. We validate this approach on ultrafast electron diffraction data of bismuth samples undergoing thermalization upon excitation via 800 nm laser pulses. The network was able to predict transient temperatures with a deviation of less than 6% from analytically estimated values. Notably, this performance was achieved on a dataset of 408 images only. We believe that employing this network in experimental settings where high volumes of visual data are collected, such as beam lines, could provide insights into the structural dynamics of different samples.

7.
Nat Methods ; 16(10): 979-982, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527838

RESUMEN

We introduce a liquid application method for time-resolved analyses (LAMA), an in situ mixing approach for serial crystallography. Picoliter-sized droplets are shot onto chip-mounted protein crystals, achieving near-full ligand occupancy within theoretical diffusion times. We demonstrate proof-of-principle binding of GlcNac to lysozyme, and resolve glucose binding and subsequent ring opening in a time-resolved study of xylose isomerase.


Asunto(s)
Cristalografía/métodos , Sincrotrones , Acetilglucosamina/química , Isomerasas Aldosa-Cetosa/química , Glucosa/química , Muramidasa/química , Prueba de Estudio Conceptual
8.
J Biol Chem ; 295(44): 14793-14804, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32703899

RESUMEN

Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.


Asunto(s)
Cianobacterias/química , Mutación , Bombas de Protones/química , Rodopsinas Microbianas/química , Sitios de Unión , Biopolímeros/química , Cristalografía por Rayos X , Transporte Iónico , Conformación Proteica , Bombas de Protones/genética , Protones , Retinaldehído/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
9.
Nat Methods ; 15(11): 901-904, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377366

RESUMEN

We present a 'hit-and-return' (HARE) method for time-resolved serial synchrotron crystallography with time resolution from milliseconds to seconds or longer. Timing delays are set mechanically, using the regular pattern in fixed-target crystallography chips and a translation stage system. Optical pump-probe experiments to capture intermediate structures of fluoroacetate dehalogenase binding to its ligand demonstrated that data can be collected at short (30 ms), medium (752 ms) and long (2,052 ms) intervals.


Asunto(s)
Cristalografía por Rayos X , Hidrolasas/química , Conformación Proteica , Rhodopseudomonas/enzimología , Sincrotrones/instrumentación , Diseño de Equipo , Modelos Moleculares , Factores de Tiempo
10.
J Chem Phys ; 154(11): 111107, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33752362

RESUMEN

Time-resolved studies have so far relied on rapidly triggering a photo-induced dynamic in chemical or biological ions or molecules and subsequently probing them with a beam of fast moving photons or electrons that crosses the studied samples in a short period of time. Hence, the time resolution of the signal is mainly set by the pulse duration of the pump and probe pulses. In this paper, we propose a different approach to this problem that has the potential to consistently achieve orders of magnitude higher time resolutions than what is possible with laser technology or electron beam compression methods. Our proposed approach relies on accelerating the sample to a high speed to achieve relativistic time dilation. Probing the time-dilated sample would open up previously inaccessible time resolution domains.

11.
Microsc Microanal ; 27(1): 44-53, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33280632

RESUMEN

Liquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics of specimens in a liquid environment. The conventional sample geometry consists of a liquid layer tightly sandwiched between two Si3N4 windows with a nominal spacing on the order of 0.5 µm. We describe a variation of the conventional approach, wherein the Si3N4 windows are separated by a 10-µm-thick spacer, thus providing room for gas flow inside the liquid specimen enclosure. Adjusting the pressure and flow speed of humid air inside this environmental liquid cell (ELC) creates a stable liquid layer of controllable thickness on the bottom window, thus facilitating high-resolution observations of low mass-thickness contrast objects at low electron doses. We demonstrate controllable liquid thicknesses in the range 160 ± 34 to 340 ± 71 nm resulting in corresponding edge resolutions of 0.8 ± 0.06 to 1.7 ± 0.8 nm as measured for immersed gold nanoparticles. Liquid layer thickness 40 ± 8 nm allowed imaging of low-contrast polystyrene particles. Hydration effects in the ELC have been studied using poly-N-isopropylacrylamide nanogels with a silica core. Therefore, ELC can be a suitable tool for in situ investigations of liquid specimens.

12.
Clin Oral Investig ; 25(12): 6757-6768, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33977388

RESUMEN

OBJECTIVES: The aim of this investigation was the detailed analysis of the human pulp proteome using the new picosecond infrared laser (PIRL)-based sampling technique, which is based on a completely different mechanism compared to mechanical sampling. Proteome analysis of healthy pulp can provide data to define changes in the proteome associated with dental disease. MATERIAL AND METHODS: Immediately after extraction of the entire, undamaged tooth, 15 wisdom teeth were deep frozen in liquid nitrogen and preserved at -80°C. Teeth were crushed, and the excised frozen pulps were conditioned for further analysis. The pulps were sampled using PIRL, and the aspirates digested with trypsin and analyzed with mass spectrometry. Pulp proteins were categorized according to their gene ontology terminus. Proteins identified exclusively in this study were searched in the Human Protein Atlas (HPA) for gaining information about the main known localization and function. RESULTS: A total of 1348 proteins were identified in this study. The comparison with prior studies showed a match of 72%. Twenty-eight percent of the proteins were identified exclusively in this study. Considering HPA, almost half of these proteins were assigned to tissues that could be pulp specific. CONCLUSION: PIRL is releasing proteins from the dental pulp which are not dissolved by conventional sampling techniques. Clinical Relevance The presented data extend current knowledge on dental pulp proteomics in healthy teeth and can serve as a reference for studies on pulp proteomics in dental disease.


Asunto(s)
Rayos Láser , Proteoma , Pulpa Dental , Humanos , Espectrometría de Masas , Proteómica , Manejo de Especímenes
13.
Biochemistry ; 59(25): 2371-2385, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32510933

RESUMEN

Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.


Asunto(s)
Cobre/metabolismo , Multimerización de Proteína/efectos de los fármacos , gamma-Cristalinas/metabolismo , Cobre/química , Cisteína/química , Disulfuros/química , Humanos , Mutación , Oxidación-Reducción , Unión Proteica , Multimerización de Proteína/efectos de la radiación , Rayos Ultravioleta , gamma-Cristalinas/química , gamma-Cristalinas/genética
14.
J Am Chem Soc ; 142(39): 16569-16578, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32869985

RESUMEN

The success of organic-inorganic perovskites in optoelectronics is dictated by the complex interplay between various underlying microscopic phenomena. The structural dynamics of organic cations and the inorganic sublattice after photoexcitation are hypothesized to have a direct effect on the material properties, thereby affecting the overall device performance. Here, we use ultrafast heterodyne-detected two-dimensional (2D) electronic spectroscopy to reveal impulsively excited vibrational modes of methylammonium (MA) lead iodide perovskite, which drive the structural distortion after photoexcitation. Vibrational analysis of the measured data allows us to monitor the time-evolved librational motion of the MA cation along with the vibrational coherences of the inorganic sublattice. Wavelet analysis of the observed vibrational coherences reveals the coherent generation of the librational motion of the MA cation within ∼300 fs complemented with the coherent evolution of the inorganic skeletal motion. To rationalize this observation, we employed the configuration interaction singles (CIS), which support our experimental observations of the coherent generation of librational motions in the MA cation and highlight the importance of the anharmonic interaction between the MA cation and the inorganic sublattice. Moreover, our advanced theoretical calculations predict the transfer of the photoinduced vibrational coherence from the MA cation to the inorganic sublattice, leading to reorganization of the lattice to form a polaronic state with a long lifetime. Our study uncovers the interplay of the organic cation and inorganic sublattice during formation of the polaron, which may lead to novel design principles for the next generation of perovskite solar cell materials.

15.
J Synchrotron Radiat ; 27(Pt 2): 360-370, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153274

RESUMEN

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.

16.
Osteoarthritis Cartilage ; 28(5): 562-571, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31862470

RESUMEN

In this narrative review, we discuss the emerging role of innate immunity in osteoarthritis (OA) joint pain. First, we give a brief description of the pain pathway in the context of OA. Then we consider how neuro-immune signaling pathways may promote OA pain. First, activation of neuronal Pattern Recognition Receptors by mediators released in a damaged joint can result in direct excitation of nociceptors, as well as in production of chemokines and cytokines. Secondly, indirect neuro-immune signaling may occur when innate immune cells produce algogenic factors, including chemokines and cytokines, that act on the pain pathway. Neuro-immune crosstalk occurs at different levels of the pathway, starting in the joint but also in the innervating dorsal root ganglia and in the dorsal horn. Synovitis is characterized by recruitment of immune cells, including macrophages, mast cells, and CD4+ lymphocytes, which may contribute to nociceptor sensitization and OA pain through production of algogenic factors that amplify the activation of sensory neurons. We discuss examples where this scenario has been suggested by findings in human OA and in animal models. Overall, increasing evidence suggests that innate immune pathways play an initiating as well as facilitating role in pain, but information on how these pathways operate in OA remains limited. Since these innate pathways are eminently targetable, future studies in this area may provide fruitful leads towards a better management of symptomatic OA.


Asunto(s)
Artralgia/inmunología , Inmunidad Innata/inmunología , Nociceptores/metabolismo , Osteoartritis/inmunología , Sinovitis/inmunología , Animales , Artralgia/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Ganglios Espinales/inmunología , Ganglios Espinales/metabolismo , Humanos , Neuroinmunomodulación/inmunología , Osteoartritis/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Asta Dorsal de la Médula Espinal/inmunología , Asta Dorsal de la Médula Espinal/metabolismo , Sinovitis/metabolismo
17.
Osteoarthritis Cartilage ; 28(5): 581-592, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31982564

RESUMEN

OBJECTIVE: Following destabilization of the medial meniscus (DMM), mice develop experimental osteoarthritis (OA) and associated pain behaviors that are dependent on the stage of disease. We aimed to describe changes in gene expression in knee-innervating dorsal root ganglia (DRG) after surgery, in order to identify molecular pathways associated with three pre-defined pain phenotypes: "post-surgical pain", "early-stage OA pain", and "persistent OA pain". DESIGN: We performed DMM or sham surgery in 10-week old male C57BL/6 mice and harvested L3-L5 DRG 4, 8, and 16 weeks after surgery or from age-matched naïve mice (n = 3/group). RNA was extracted and an Affymetrix Mouse Transcriptome Array 1.0 was performed. Three pain phenotypes were defined: "post-surgical pain" (sham and DMM 4-week vs 14-week old naïve), "early OA pain" (DMM 4-week vs sham 4-week), and "persistent OA pain" (DMM 8- and 16-week vs naïve and sham 8- and 16-week). 'Top hit' genes were defined as P < 0.001. Pathway analysis (Ingenuity Pathway Analysis) was conducted using differentially expressed genes defined as P < 0.05. In addition, we performed qPCR for Ngf and immunohistochemistry for F4/80+ macrophages in the DRG. RESULTS: For each phenotype, top hit genes identified a small number of differentially expressed genes, some of which have been previously associated with pain (7/67 for "post-surgical pain"; 2/14 for "early OA pain"; 8/37 for "persistent OA pain"). Overlap between groups was limited, with 8 genes differentially regulated (P < 0.05) in all three phenotypes. Pathway analysis showed that in the persistent OA pain phase many of the functions of differentially regulated genes are related to immune cell recruitment and activation. Genes previously linked to OA pain (CX3CL1, CCL2, TLR1, and NGF) were upregulated in this phenotype and contributed to activation of the neuroinflammation canonical pathway. In separate sets of mice, we confirmed that Ngf was elevated in the DRG 8 weeks after DMM (P = 0.03), and numbers of F4/80+ macrophages were increased 16 weeks after DMM (P = 0.002 vs Sham). CONCLUSION: These transcriptomics findings support the idea that distinct molecular pathways discriminate early from persistent OA pain. Pathway analysis suggests neuroimmune interactions in the DRG contribute to initiation and maintenance of pain in OA.


Asunto(s)
Artralgia/genética , Ganglios Espinales/metabolismo , Expresión Génica , Inmunidad Innata/genética , Osteoartritis de la Rodilla/genética , Dolor Postoperatorio/genética , Animales , Artralgia/inmunología , Artritis Experimental/genética , Artritis Experimental/inmunología , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Inmunidad Innata/inmunología , Masculino , Meniscos Tibiales/cirugía , Ratones , Análisis por Micromatrices , Neuroinmunomodulación/genética , Neuroinmunomodulación/inmunología , Osteoartritis/genética , Osteoartritis/inmunología , Osteoartritis de la Rodilla/inmunología , Dolor Postoperatorio/inmunología , Fenotipo , ARN Mensajero/metabolismo
18.
Photosynth Res ; 144(2): 137-145, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32306173

RESUMEN

We study the impact of underdamped intramolecular vibrational modes on the efficiency of the excitation energy transfer in a dimer in which each state is coupled to its own underdamped vibrational mode and, in addition, to a continuous background of environmental modes. For this, we use the numerically exact hierarchy equation of motion approach. We determine the quantum yield and the transfer time in dependence of the vibronic coupling strength, and in dependence of the damping of the incoherent background. Moreover, we tune the vibrational frequencies out of resonance with the excitonic energy gap. We show that the quantum yield is enhanced by up to 10% when the vibrational frequency of the donor is larger than at the acceptor. The vibronic energy eigenstates of the acceptor acquire then an increased density of states, which leads to a higher occupation probability of the acceptor in thermal equilibrium. We can conclude that an underdamped vibrational mode which is weakly coupled to the dimer fuels a faster transfer of excitation energy, illustrating that long-lived vibrations can, in principle, enhance energy transfer, without involving long-lived electronic coherence.


Asunto(s)
Modelos Químicos , Proteínas/química , Transferencia de Energía , Teoría Cuántica , Vibración
19.
Opt Lett ; 45(8): 2255-2258, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287207

RESUMEN

We report on a compact mid-infrared laser architecture, comprising a chain of $ {\rm ZnGeP}_2 $ZnGeP2-based optical parametric amplifiers (OPAs), which afford a higher energy yield ($ \mathbin{\lower.3ex\hbox{$\buildrel \lt \over{\smash{\scriptstyle\sim}\vphantom{_x}}$}} 60\;\unicode{x00B5} {\rm J} $∼x<60µJ at 1 kHz) compared to most conventional OPA gain media transparent in the 2-8-µm wavelength range. Specifically, our OPA scheme allows ready tunability in the molecular fingerprint regime and is tailored for strong-field excitation and coherent control of both stretch and bend (or torsional) vibrational modes in molecules. The OPAs are pumped and directly seeded (via supercontinuum generation) by a 2-µm, 3-ps Ho:YLF regenerative amplifier. The compressibility of the OPA output is demonstrated by a representative measurement of the near-Gaussian temporal profile of a dispersion-compensated 105-fs idler pulse at a central wavelength of 5.1 µm, corresponding to ${\sim}6 $∼6 optical cycles. Detailed numerical simulations closely corroborate the experimental measurements, providing a benchmark and a platform to further explore the parameter space for future design, optimization, and implementation of high-energy, ultrafast, mid-infrared laser schemes.

20.
J Chem Phys ; 153(19): 194504, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33218233

RESUMEN

High energy electron scattering of liquid water (H2O) at near-ambient temperature and pressure was performed in a transmission electron microscope (TEM) to determine the radial distribution of water, which provides information on intra- and intermolecular spatial correlations. A recently developed environmental liquid cell enables formation of a stable water layer, the thickness of which is readily controlled by pressure and flow rate adjustments of a humid air stream passing between two silicon nitride (Si3N4) membranes. The analysis of the scattering data is adapted from the x-ray methodology to account for multiple scattering in the H2O:Si3N4 sandwich layer. For the H2O layer, we obtain oxygen-oxygen (O-O) and oxygen-hydrogen (O-H) peaks at 2.84 Å and 1.83 Å, respectively, in good agreement with values in the literature. This demonstrates the potential of our approach toward future studies of water-based physics and chemistry in TEMs or electron probes of structural dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA