RESUMEN
Benzoxaboroles are a new class of leucyl-tRNA synthetase inhibitors. Epetraborole, a benzoxaborole, is a clinical candidate developed for Gram-negative infections and has been confirmed to exhibit favorable activity against a well known pulmonary pathogen, Mycobacterium abscessus. However, according to ClinicalTrials.gov, in 2017, a clinical phase II study on the use of epetraborole to treat complicated urinary tract and intra-abdominal infections was terminated due to the rapid emergence of drug resistance during treatment. Nevertheless, epetraborole is in clinical development for nontuberculous mycobacteria (NTM) disease especially for Mycobacterium avium complex-related pulmonary disease (MAC-PD). DS86760016, an epetraborole analog, was further demonstrated to have an improved pharmacokinetic profile, lower plasma clearance, longer plasma half-life, and higher renal excretion than epetraborole in animal models. In this study, DS86760016 was found to be similarly active against M. abscessus in vitro, intracellularly, and in zebrafish infection models with a low mutation frequency. These results expand the diversity of druggable compounds as new benzoxaborole-based candidates for treating M. abscessus diseases.
Asunto(s)
Aminoacil-ARNt Sintetasas , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Animales , Pez Cebra , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Micobacterias no TuberculosasRESUMEN
29Si silica nanoparticles (SiO2 NPs) are promising magnetic resonance imaging (MRI) probes that possess advantageous properties for in vivo applications, including suitable biocompatibility, tailorable properties, and high water dispersibility. Dynamic nuclear polarization (DNP) is used to enhance 29Si MR signals via enhanced nuclear spin alignment; to date, there has been limited success employing DNP for SiO2 NPs due to the lack of endogenous electronic defects that are required for the process. To create opportunities for SiO2-based 29Si MRI probes, we synthesized variously featured SiO2 NPs with selective 29Si isotope enrichment on homogeneous and core@shell structures (shell thickness: 10 nm, core size: 40 nm), and identified the critical factors for optimal DNP signal enhancement as well as the effective hyperpolarization depth when using an exogenous radical. Based on the synthetic design, this critical factor is the proportion of 29Si in the shell layer regardless of core enrichment. Furthermore, the effective depth of hyperpolarization is less than 10 nm between the surface and core, which demonstrates an approximately 40% elongated diffusion length for the shell-enriched NPs compared to the natural abundance NPs. This improved regulation of surface properties facilitates the development of isotopically enriched SiO2 NPs as hyperpolarized contrast agents for in vivo MRI.
Asunto(s)
Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , Nanopartículas/química , Medios de Contraste/química , Imagen por Resonancia Magnética , Espectroscopía de Resonancia MagnéticaRESUMEN
In this article, the development of fluorescent imaging probes for the detection of Alzheimer's disease (AD)-associated protein aggregates is described. Indane derivatives with a donor-π-acceptor (D-π-A) structure were designed and synthesized. The probes were evaluated for their ability to bind to ß-amyloid (Aß) protein aggregates, which are a key pathological hallmark of AD. The results showed that several probes exhibited significant changes in fluorescence intensity at wavelengths greater than 600 nm when they were bound to Aß aggregates compared to the Aß monomeric form. Among the tested probes, four D-π-A type indane derivatives showed promising binding selectivity to Aß aggregates over non-specific proteins such as bovine serum albumin (BSA). The molecular docking study showed that our compounds were appropriately located along the Aß fibril axis through the hydrophobic tunnel structure. Further analysis revealed that the most active compound having dimethylaminopyridyl group as an election donor and dicyano group as an electron acceptor could effectively stain Aß plaques in brain tissue samples from AD transgenic mice. These findings suggest that our indane-based compounds have the potential to serve as fluorescent probes for the detection and monitoring of Aß aggregation in AD.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Colorantes Fluorescentes/química , Agregado de Proteínas , Simulación del Acoplamiento Molecular , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Encéfalo/metabolismo , Placa Amiloide/química , Placa Amiloide/diagnóstico , Placa Amiloide/patologíaRESUMEN
The embedding of radicals at different locations within core@shell silica nanoparticles contributes to enhanced polarization capability and can be self-polarized without adding external radicals. With grafting the radical source homogenously inside of the nanoparticles, a significant 29Si hyperpolarization signal enhancement of 49.4 was obtained.
Asunto(s)
Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas/químicaRESUMEN
The present study describes evaluation of epigenetic regulation by a small molecule as the therapeutic potential for treatment of Huntington's disease (HD). We identified 5-allyloxy-2-(pyrrolidin-1-yl)quinoline (APQ) as a novel SETDB1/ESET inhibitor using a combined in silico and in vitro cell based screening system. APQ reduced SETDB1 activity and H3K9me3 levels in a HD cell line model. In particular, not only APQ reduced H3K9me3 levels in the striatum but it also improved motor function and neuropathological symptoms such as neuronal size and activity in HD transgenic (YAC128) mice with minimal toxicity. Using H3K9me3-ChIP and genome-wide sequencing, we also confirmed that APQ modulates H3K9me3-landscaped epigenomes in YAC128 mice. These data provide that APQ, a novel small molecule SETDB1 inhibitor, coordinates H3K9me-dependent heterochromatin remodelling and can be an epigenetic drug for treating HD, leading with hope in clinical trials of HD.
Asunto(s)
Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Heterocromatina/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Enfermedad de Huntington/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Técnicas Biosensibles , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/química , Transferencia Resonante de Energía de Fluorescencia , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Estructura Molecular , Neuronas/metabolismo , Neuronas/patologíaRESUMEN
This report describes the synthesis of a library of fluorogenic carbapenemase substrates consisting of carbapenem derivatives, fluorescence dyes, and active cleavable linkers and their evaluation for specifically detecting carbapenemase-producing organisms (CPOs). We synthesized a series of compounds having three different types of linkers such as benzyl ether, carbamate, and amine using hydroxymethyl carbapenem 7a and hydroxyallyl carbapenem 7b as key intermediates. Probe 1b exhibited high stability and a prompt turn-on fluorescence signal upon hydrolysis by carbapenemases. In particular, the screening of clinical samples indicated that the probe 1b exhibited excellent selectivity to the CPOs over other ß-lactamases or non-carbapenemase producing bacteria, which may be of clinical use for the rapid and accurate detection of CPOs for timely diagnosis and treatment.
Asunto(s)
Bacterias/patogenicidad , Proteínas Bacterianas/química , Carbapenémicos/química , Colorantes Fluorescentes/uso terapéutico , beta-Lactamasas/química , Humanos , Modelos MolecularesRESUMEN
Rapid and accurate detection of carbapenemase-producing Enterobacteriaceae (CPE) is critical for appropriate treatment and infection control. We compared a rapid fluorogenic assay using a carbapenem-based fluorogenic probe with other phenotypic assays: modified carbapenem inactivation method (mCIM), Carba NP test (CNP), and carbapenemase inhibition test (CIT). A total of 217 characterized isolates of Enterobacteriaceae were included as follows: 63 CPE; 48 non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae (non-CP-CRE); 53 extended-spectrum ß-lactamase producers; and 53 third-generation-cephalosporin-susceptible isolates. The fluorogenic assay using bacterial colonies (Fluore-C) was conducted by lysing the isolates followed by centrifugation and mixing the supernatant with fluorogenic probe. In addition, for the fluorogenic assay using spiked blood culture bottles (Fluore-Direct), pellets were obtained via the saponin preparation method, which can directly identify the pathogens using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The fluorescence signal was measured over 50 min using a fluorometer. The fluorescent signal of CPE was significantly higher than that of non-CPE in both Fluore-C (median relative fluorescence units [RFU] [range], 5,814 [240 to 32,009] versus 804 [36 to 2,480], respectively; P < 0.0001) and Fluore-Direct (median RFU [range], 10,355 [1,689 to 31,463] versus 1,068 [428 to 2,155], respectively; P < 0.0001) tests. Overall, positive and negative percent agreements of Fluore-C, mCIM, CNP, CIT, and Fluore-Direct were 100% and 98.7%, 98.3% and 97.5%, 88.1% and 100%, 96.4% and 98.7%, and 98.3% and 98.1%, respectively. The relatively lower positive percent agreement (PPA) of CNP was mainly observed in OXA-type CPE. The fluorogenic assay showed excellent performance with bacterial colonies and also directly from positive blood cultures. We included many non-CP-CRE isolates for strict evaluation. The fluorogenic assay will be a useful tool for clinical microbiology laboratories.
Asunto(s)
Bacteriemia , Técnicas Bacteriológicas , Cultivo de Sangre , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/microbiología , Antibacterianos/farmacología , Cultivo de Sangre/métodos , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/metabolismo , Colorantes Fluorescentes/química , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Here, we describe the synthesis of disubstituted pyrimidine derivatives and their biological evaluation as selective 5-HT2C agonists. To improve selectivity for 5-HT2C over other subtypes, we synthesized two series of disubstituted pyrimidines with fluorophenylalkoxy groups at either the 5-position or 4-position and varying cyclic amines at the 2-position. The in vitro cell-based assay and binding assay identified compounds 10a and 10f as potent 5-HT2C agonists. Further studies on selectivity to 5-HT subtypes and drug-like properties indicated that 2,4-disubstituted pyrimidine 10a showed a highly agonistic effect on the 5-HT2C receptor, with excellent selectivity, as well as exceptional drug-like properties, including high plasma and microsomal stability, along with low CYP inhibition. Thus, pyrimidine 10a could be considered a viable lead compound as a 5-HT2C selective agonist.
Asunto(s)
Pirimidinas/síntesis química , Pirimidinas/farmacología , Receptor de Serotonina 5-HT2C/química , Agonistas del Receptor de Serotonina 5-HT2/síntesis química , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Pirimidinas/química , Receptor de Serotonina 5-HT2C/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/química , Relación Estructura-ActividadRESUMEN
We herein propose a polymeric nanovehicle system that has the ability to remarkably improve cellular uptake and transdermal delivery. Cell-penetrating peptide-patchy deformable polymeric nanovehicles were fabricated by tailored coassembly of amphiphilic poly(ethylene oxide)- block-poly(ε-caprolactone) (PEO- b-PCL), mannosylerythritol lipid (MEL), and YGRKKRRQRRR-cysteamine (TAT)-linked MEL. Using X-ray diffraction, differential scanning calorimetry, and nuclear magnetic resonance analyses, we revealed that the incorporation of MEL having an asymmetric alkyl chain configuration was responsible for the deformable phase property of the vehicles. We also discovered that the nanovehicles were mutually attracted, exhibiting a gel-like fluid characteristic due to the dipole-dipole interaction between the hydroxyl group of MEL and the methoxy group of PEO- b-PCL. Coassembly of TAT-linked MEL with the deformable nanovehicles significantly enhanced cellular uptake due to macropinocytosis and caveolae-/lipid raft-mediated endocytosis. Furthermore, the in vivo skin penetration test revealed that our TAT-patchy deformable nanovehicles remarkably improved transdermal delivery efficiency.
Asunto(s)
Glucolípidos/química , Nanopartículas/química , Fragmentos de Péptidos/administración & dosificación , Poliésteres/química , Absorción Cutánea , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/administración & dosificación , Administración Cutánea , Adulto , Línea Celular , Cisteamina/química , Femenino , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacocinética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacocinéticaRESUMEN
The copper(I)-catalyzed azide-alkyne cycloaddition reaction has been extensively studied and widely applied in organic synthesis. However, the formation of 1,2,3-triazoles with electron-deficient azide has been a challenging problem. In this report, we have demonstrated the formation of regioselective 1,4-disubstituted 1,2,3-triazoles from various types of aryl terminal alkynes and azidoformates, which are electron-deficient azides, using a commercialized [Cu(CH3CN)4]PF6 copper(I) catalyst under mild conditions.
RESUMEN
Huntington's disease (HD) is an autosomal-dominant inherited neurological disorder caused by expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. Altered histone modifications and epigenetic mechanisms are closely associated with HD suggesting that transcriptional repression may play a pathogenic role. Epigenetic compounds have significant therapeutic effects in cellular and animal models of HD, but they have not been successful in clinical trials. Herein, we report that dSETDB1/ESET, a histone methyltransferase (HMT), is a mediator of mutant HTT-induced degeneration in a fly HD model. We found that nogalamycin, an anthracycline antibiotic and a chromatin remodeling drug, reduces trimethylated histone H3K9 (H3K9me3) levels and pericentromeric heterochromatin condensation by reducing the expression of Setdb1/Eset. H3K9me3-specific ChIP-on-ChIP analysis identified that the H3K9me3-enriched epigenome signatures of multiple neuronal pathways including Egr1, Fos, Ezh1, and Arc are deregulated in HD transgenic (R6/2) mice. Nogalamycin modulated the expression of the H3K9me3-landscaped epigenome in medium spiny neurons and reduced mutant HTT nuclear inclusion formation. Moreover, nogalamycin slowed neuropathological progression, preserved motor function, and extended the life span of R6/2 mice. Together, our results indicate that modulation of SETDB1/ESET and H3K9me3-dependent heterochromatin plasticity is responsible for the neuroprotective effects of nogalamycin in HD and that small compounds targeting dysfunctional histone modification and epigenetic modification by SETDB1/ESET may be a rational therapeutic strategy in HD.
Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Heterocromatina/metabolismo , Enfermedad de Huntington/metabolismo , Animales , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Enfermedad de Huntington/mortalidad , Enfermedad de Huntington/patología , Ratones , Tasa de SupervivenciaRESUMEN
ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach. A ligand-based pharmacophore model was built and employed for the virtual screening of ChemDiv and Asinex database. Also, a human SETDB1/ESET homology model was constructed to supplement the data further. Biological evaluation of the selected 21 candidates singled out 5 compounds exhibiting a notable reduction of the H3K9me3 level via inhibitory potential of SETDB1/ESET activity in SETDB1/ESET-inducible cell line and HD striatal cells. Later on, we identified two compounds as final hits that appear to have neuronal effects without cytotoxicity based on the result from MTT assay. These compounds hold the calibre to become the future lead compounds and can provide structural insights into more SETDB1/ESET-focused drug discovery research. Moreover, these SETDB1/ESET inhibitors may be applicable for the preclinical study to ameliorate neurodegenerative disorders via epigenetic regulation.
Asunto(s)
Derivados del Benceno/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteína Metiltransferasas/antagonistas & inhibidores , Derivados del Benceno/farmacología , Sitios de Unión , Línea Celular , Supervivencia Celular , Simulación por Computador , Bases de Datos Farmacéuticas , Humanos , Ligandos , Metilación , Simulación del Acoplamiento Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Unión Proteica , Proteína Metiltransferasas/metabolismo , Relación Estructura-ActividadRESUMEN
A series of pyrimidine derivatives 4a-i were synthesized and evaluated for their binding affinities towards 5-HT2C receptors. With regard to designed molecules 4a-i, the influence of the size of alkyl ether and the absolute configuration of a stereogenic center on the 5-HT2C binding affinity and selectivity was studied. The most promising diasteromeric mixtures 4d and 4e were selected in the initial radioligand binding assay and they were further synthesized as optically active forms starting from optically active alcohols 5d and 5e, prepared by an enzymatic kinetic resolution. Pyrimidine analogue (R,R)-4e displayed an excellent 5-HT2C binding affinity with good selectivity values against a broad range of other 5-HT receptor subtypes.
Asunto(s)
Pirimidinas/síntesis química , Receptor de Serotonina 5-HT2C/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/síntesis química , Animales , Células CHO , Cricetulus , Modelos Moleculares , Estructura Molecular , Pirimidinas/química , Pirimidinas/farmacología , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Relación Estructura-ActividadRESUMEN
We described here the synthesis and biological evaluation of picolinamides and thiazole-2-carboxamides as potential mGluR5 antagonists. We found that a series of thiazole derivatives 6 showed better inhibitory activity against mGluR5. Compounds 6bc and 6bj have been identified as potent antagonists (IC50=274 and 159nM) showing excellent in vitro stability profile. Molecular docking study using the crystal structure of mGluR5 revealed that our compounds 6bc and 6bj fit the allosteric binding site of mavoglurant well.
Asunto(s)
Amidas/farmacología , Ácidos Picolínicos/síntesis química , Ácidos Picolínicos/farmacología , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Tiazoles/farmacología , Amidas/síntesis química , Amidas/química , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Ácidos Picolínicos/química , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/químicaRESUMEN
The remodeling of chromatin in the nucleolus is important for the control of ribosomal DNA (rDNA) transcription and ribosome biogenesis. Herein, we found that upstream binding factor (UBF) interacts with ESET, a histone H3K9 methyltransferase and is trimethylated at Lys (K) 232/254 by ESET. UBF trimethylation leads to nucleolar chromatin condensation and decreased rDNA transcriptional activity. UBF mutations at K232/254A and K232/254R restored rDNA transcriptional activity in response to ESET. Both ESET-ΔSET mutant and knockdown of ESET by short hairpin RNA reduced trimethylation of UBF and resulted in the restoration of rDNA transcription. Atomic force microscopy confirmed that UBF trimethylated by ESET modulates the plasticity of nucleolar chromatin. We further demonstrated that UBF trimethylation at K232/254 by ESET deregulates rDNA transcription in a cell model of Huntington's disease. Together, our findings show that a novel epigenetic modification of UBF is linked to impaired rDNA transcription and nucleolar chromatin remodeling, which may play key roles in the pathogenesis of neurodegeneration.
Asunto(s)
Nucléolo Celular/enzimología , Nucléolo Celular/genética , ADN Ribosómico/metabolismo , Heterocromatina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Transcripción Genética , Animales , Línea Celular , Humanos , Enfermedad de Huntington/enzimología , Metilación , Ratones , Mutación , Proteínas del Complejo de Iniciación de Transcripción Pol1/química , Proteínas del Complejo de Iniciación de Transcripción Pol1/genéticaRESUMEN
Glutamate is the major excitatory neurotransmitter and known to activate the metabotropic and ionotropic glutamate receptors in the brain. Among these glutamate receptors, metabotropic glutamate receptor 1 (mGluR1) has been implicated in various brain disorders including anxiety, schizophrenia and chronic pain. Several studies demonstrated that the blockade of mGluR1 signaling reduced pain responses in animal models, suggesting that mGluR1 is a promising target for the treatment of neuropathic pain. In this study, we have developed mGluR1 antagonists with an aryl isoxazole scaffold, and identify several compounds that are orally active in vivo. We believe that these compounds can serve as a useful tool for the investigation of the role of mGluR1 and a promising lead for the potential treatment of neuropathic pain.
Asunto(s)
Analgésicos/síntesis química , Isoxazoles/química , Neuralgia/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Administración Oral , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Isoxazoles/uso terapéutico , Neuralgia/inducido químicamente , Unión Proteica , Ratas , Receptores de Glutamato Metabotrópico/metabolismo , Relación Estructura-ActividadRESUMEN
Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction.
Asunto(s)
Gases/química , Microscopía de Fuerza Atómica/métodos , Benceno/química , Ácidos Grasos/química , Péptidos/química , Compuestos de Sulfhidrilo/químicaRESUMEN
PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is essential for maturation of ribosomes, may have a role in lipogenesis, and is implicated in several diseases. A potent, selective, and cell-active PRMT3 inhibitor would be a valuable tool for further investigating PRMT3 biology. Here we report the discovery of the first PRMT3 chemical probe, SGC707, by structure-based optimization of the allosteric PRMT3 inhibitors we reported previously, and thorough characterization of this probe in biochemical, biophysical, and cellular assays. SGC707 is a potent PRMT3 inhibitor (IC50 =31±2â nM, KD =53±2â nM) with outstanding selectivity (selective against 31 other methyltransferases and more than 250 non-epigenetic targets). The mechanism of action studies and crystal structure of the PRMT3-SGC707 complex confirm the allosteric inhibition mode. Importantly, SGC707 engages PRMT3 and potently inhibits its methyltransferase activity in cells. It is also bioavailable and suitable for animal studies. This well-characterized chemical probe is an excellent tool to further study the role of PRMT3 in health and disease.
Asunto(s)
Inhibidores Enzimáticos/química , Isoquinolinas/química , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Regulación Alostérica , Sitios de Unión , Calorimetría , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Histonas , Humanos , Isoquinolinas/metabolismo , Metilación , Simulación de Dinámica Molecular , Mutagénesis , Unión Proteica , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Resonancia por Plasmón de SuperficieRESUMEN
Next-generation sequencing (NGS) technologies recently developed are now used for study of genomes from various organisms. Sequencing-by-synthesis (SBS) is a key strategy in the NGS. The SBS uses nucleotides so-called dual-modified reversible terminators (DRTs) in which bases are labeled with fluorophores and 3'-OH is protected with a reversibly cleavable chemical group, respectively. In this study, we examined the possibility of performing SBS with mono-modified reversible terminators (MRTs), in which the reversible blocking group on the 3'-OH plays a dual role as a fluorescent signal report as well as a chemical protection. We studied cyclic reversible termination by using two MRTs (dA and dT), wherein the modifications were two different fluorophores and cleavable to regenerate a free 3'-OH. We here demonstrated that SBS could be achieved with incorporation of MRTs by a DNA polymerase and correct base-calls based on the two different colors from the fluorophores.
Asunto(s)
Nucleótidos/síntesis química , Estructura Molecular , Nucleótidos/química , Análisis de Secuencia de ADNRESUMEN
This article describes the rapid and diversified synthesis of pyrrolidinyl triazoles for the discovery of mitochondrial permeability transition pore (mPTP) blockers. The 1,3-dipolar cycloaddition of ethynyl trifluoroborate with azidopyrrolidine produced a key intermediate, triazolyl trifluoroborate 4, which subsequently underwent a Suzuki-Miyaura coupling reaction to afford a series of 1,4-disubstituted triazoles 2. Subsequent biological evaluation of these derivatives indicated 2ag and 2aj as the most potent mPTP blockers exhibiting excellent cytochrome P450 (CYP) stability when compared to the previously reported oxime analogue 1. The present work clearly demonstrates that a 1,2,3-triazole can be used as a stable oxime surrogate. Furthermore, it suggests that late-stage diversification through coupling reactions of organotrifluoroborates is suitable for the rapid discovery of biologically active molecules.