RESUMEN
Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the ability of strain DG to interact with the host is at least partly associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in the DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon nuclear magnetic resonance (NMR) and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of l-rhamnose, d-galactose, and N-acetyl-d-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that DG-EPS displays immunostimulating properties by enhancing the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and particularly that of the chemokines IL-8 and CCL20, in the human monocytic cell line THP-1. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, DG-EPS is a bacterial macromolecule with the ability to boost the immune system either as a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross talk between L. paracasei DG and the host. IMPORTANCE: The consumption of food products and supplements called probiotics (i.e., containing live microbial cells) to potentially prevent or treat specific diseases is constantly gaining popularity. The lack of knowledge on the precise mechanisms supporting their potential health-promoting properties, however, greatly limits a more appropriate use of each single probiotic strain. In this context, we studied a well-known probiotic, Lactobacillus paracasei DG, in order to identify the constitutive molecules that can explain the documented health-promoting properties of this bacterium. We found a novel polysaccharide molecule, named DG-EPS, that is secreted by and covers the bacterium. We demonstrated that this molecule, which has a chemical structure never identified before, has immunostimulatory properties and therefore may contribute to the ability of the probiotic L. paracasei DG to interact with the immune system.
Asunto(s)
Expresión Génica , Lacticaseibacillus paracasei/fisiología , Polisacáridos Bacterianos/fisiología , Línea Celular , Humanos , Monocitos/microbiología , Ramnosa/químicaRESUMEN
The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention.
Asunto(s)
Proteínas Bacterianas/inmunología , Inmunidad Innata , Factores Inmunológicos/farmacología , Lactobacillus helveticus/inmunología , Probióticos/farmacología , Proteínas Bacterianas/genética , Línea Celular , ADN Bacteriano/química , ADN Bacteriano/genética , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Humanos , Lactobacillus helveticus/genética , Datos de Secuencia Molecular , Monocitos/inmunología , Monocitos/microbiología , Análisis de Secuencia de ADNRESUMEN
Totipotency of embryonic stem cells (ESCs) is controlled at the transcriptional level by a handful of transcription factors (TFs) that promote stemness and prevent differentiation. One of the most enriched DNA elements in promoters and enhancers of genes specifically active in ESCs is the CCAAT box, which is recognized by NF-Y, a trimer with histone-like subunits--NF-YB/NF--YC--and the sequence-specific NF-YA. We show that the levels of the short NF-YA isoform--NF-YAs--is high in mouse ESCs (mESCs) and drops after differentiation; a dominant negative mutant affects expression of important stem cells genes, directly and indirectly. Protein transfections of TAT-NF-YAs stimulate growth and compensate for withdrawal of leukemia inhibitory factor (LIF) in cell cultures. Bioinformatic analysis identifies NF-Y sites as highly enriched in genomic loci of stem TFs in ESCs. Specifically, 30%-50% of NANOG peaks have NF-Y sites and indeed NF-Y-binding is required for NANOG association to DNA. These data indicate that NF-Y belongs to the restricted circle of TFs that govern mESCs, and, specifically, that NF-YAs is the active isoform in these cells.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Células Madre Embrionarias/metabolismo , Animales , Factor de Unión a CCAAT/genética , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/fisiología , Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor Inhibidor de Leucemia/fisiología , Ratones , Proteína Homeótica Nanog , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMEN
The use of proper bacterial strains as probiotics for the pharyngeal mucosa is a potential prophylactic strategy for upper respiratory tract infections. In this context, we characterized in vitro the functional and immunomodulatory properties of the strains Lactobacillus helveticus MIMLh5 and Streptococcus salivarius ST3 that were selected during previous investigations as promising pharyngeal probiotics. In this study, we demonstrated in vitro that strains MIMLh5 and ST3, alone and in combination, can efficiently adhere to pharyngeal epithelial cells, antagonize Streptococcus pyogenes, and modulate host innate immunity by inducing potentially protective effects. In particular, we found that the strains MIMLh5 and ST3 activate U937 human macrophages by significantly inducing the expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Nonetheless, the induction of the anti-inflammatory interleukin-10 (IL-10) by MIMLh5 or ST3 was never lower than that of TNF-α, suggesting that these bacteria can potentially exert a regulatory rather than a proinflammatory effect. We also found that the strains MIMLh5 and ST3 induce cyclooxygenase 2 (COX-2) expression and demonstrated that toll-like receptor 2 (TLR-2) participates in the recognition of the strains MIMLh5 and ST3 by U937 cells. Finally, we observed that these microorganisms grow efficiently when cocultured in milk, suggesting that the preparation of a milk-based fermented product containing both MIMLh5 and ST3 can be a practical solution for the administration of these bacteria. In conclusion, we propose the combined use of L. helveticus MIMLh5 and S. salivarius ST3 for the preparation of novel products that display probiotic properties for the pharyngeal mucosa.
Asunto(s)
Factores Inmunológicos/farmacología , Lactobacillus helveticus/fisiología , Faringe/microbiología , Probióticos/farmacología , Streptococcus/fisiología , Antibiosis , Adhesión Bacteriana , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Células Epiteliales/microbiología , Humanos , Interleucina-10/metabolismo , Lactobacillus helveticus/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Streptococcus/inmunología , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Intense physical activity is often associated with undesirable physiological changes, including increased inflammation, transient immunodepression, increased susceptibility to infections, altered intestinal barrier integrity, and increased oxidative stress. Several trials suggested that probiotics supplementation may have beneficial effects on sport-associated gastro-intestinal and immune disorders. Recently, in a placebo-controlled human trial, the AminoAlta™ probiotic formulation (AApf) was demonstrated to increase the absorption of amino acids from pea protein, suggesting that the administration of AApf could overcome the compositional limitations of plant proteins. In this study, human cell line models were used to assess in vitro the potential capacity of AApf to protect from the physiological damages that an intense physical activity may cause. The obtained results revealed that the bacteria in the AApf have the ability to adhere to differentiated Caco-2 epithelial cell layer. In addition, the AApf was shown to reduce the activation of NF-κB in Caco-2 cells under inflammatory stimulation. Notably, this anti-inflammatory activity was enhanced in the presence of partially hydrolyzed plant proteins. The AApf also triggered the expression of cytokines by the THP-1 macrophage model in a dose-dependent manner. In particular, the expression of cytokines IL-1ß, IL-6, and TNF-α was higher than that of the regulatory cytokine IL-10, resembling a cytokine profile characteristic of M1 phenotype, which typically intervene in counteracting bacterial and viral infections. Finally, AApf was shown to reduce transepithelial permeability and increase superoxide dismutase activity in the Caco-2 cell model. In conclusion, this study suggests that the AApf may potentially provide a spectrum of benefits useful to dampen the gastro-intestinal and immune detrimental consequences of an intense physical activity.
RESUMEN
The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1ß, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.
Asunto(s)
Antibiosis , Inmunomodulación , Lactobacillus helveticus/crecimiento & desarrollo , Membrana Mucosa/microbiología , Faringe/microbiología , Probióticos , Streptococcus pyogenes/crecimiento & desarrollo , Adhesión Bacteriana , Línea Celular , Citocinas/metabolismo , Industria Lechera , Células Epiteliales/microbiología , Humanos , Lactobacillus helveticus/inmunología , Faringe/citología , Faringe/inmunología , Streptococcus pyogenes/patogenicidadRESUMEN
The research described here was aimed at the selection of oral bacteria that displayed properties compatible with their potential use as probiotics for the pharyngeal mucosa. We included in the study 56 bacteria newly isolated from the pharynges of healthy donors, which were identified at the intraspecies level and characterized in vitro for their probiotic potential. The experiments led us to select two potential probiotic bacterial strains (Streptococcus salivarius RS1 and ST3) and to compare them with the prototype oral probiotic S. salivarius strain K12. All three strains efficiently bound to FaDu human epithelial pharyngeal cells and thereby antagonized Streptococcus pyogenes adhesion and growth. All were sensitive to a variety of antibiotics routinely used for the control of upper respiratory tract infections. Immunological in vitro testing on a FaDu layer revealed different responses to RS1, ST3, and K12. RS1 and ST3 modulated NF-kappaB activation and biased proinflammatory cytokines at baseline and after interleukin-1beta (IL-1beta) induction. In conclusion, we suggest that the selected commensal streptococci represent potential pharyngeal probiotic candidates. They could display a good degree of adaptation to the host and possess potential immunomodulatory and anti-inflammatory properties.
Asunto(s)
Membrana Mucosa/microbiología , Faringe/microbiología , Probióticos , Streptococcus/fisiología , Antibacterianos/farmacología , Antibiosis , Adhesión Bacteriana , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Citocinas/inmunología , Dermatoglifia del ADN , Células Epiteliales/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , FN-kappa B/inmunología , Técnica del ADN Polimorfo Amplificado Aleatorio , Streptococcus/clasificación , Streptococcus/crecimiento & desarrollo , Streptococcus/aislamiento & purificación , Estados UnidosRESUMEN
Differentiation is a complex set of events that can be blocked by rearrangements of regulatory genes producing fusion proteins with altered properties. In the case of myxoid liposarcoma (MLS) tumors, the causative abnormality is a fusion between the CHOP transcription factor and the FUS or EWS genes. CHOP belongs to and is a negative regulator of the large CAAT/enhancer binding protein family whose alpha, beta, and delta members are master genes of adipogenesis. Recent clinical data indicate a peculiar sensitivity of these tumors to the natural marine compound trabectedin. One hypothesis is that the activity of trabectedin is related to the inactivation of the FUS-CHOP oncogene. We find that trabectedin causes detachment of the FUS-CHOP chimera from targeted promoters. Reverse transcription-PCR and chromatin immunoprecipitation analysis in a MLS line and surgical specimens of MLS patients in vivo show activation of the CAAT/enhancer binding protein-mediated transcriptional program that leads to morphologic changes of terminal adipogenesis. The activity is observed in cells with type 1 but not type 8 fusions. Hence, the drug induces maturation of MLS lipoblasts in vivo by targeting the FUS-CHOP-mediated transcriptional block. These data provide a rationale for the specific activity of trabectedin and open the perspective of combinatorial treatments with drugs acting on lipogenic pathways.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Dioxoles/farmacología , Liposarcoma Mixoide/patología , Tetrahidroisoquinolinas/farmacología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Liposarcoma Mixoide/genética , Masculino , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , Unión Proteica/efectos de los fármacos , Proteína FUS de Unión a ARN/genética , Trabectedina , Factor de Transcripción CHOP/genéticaRESUMEN
The heterotrimeric transcription factor NF-Y binds to CCAAT boxes of genes of glutamine metabolism. We set out to study the role of the regulatory NF-YA subunit in this pathway. We produced U2OS and A549 clones stably overexpressing -OE- the two splicing isoforms of NF-YA. NF-YA OE cells show normal growth and colony formation rates, but they become resistant to cell death upon glutamine deprivation. Increased mRNA and protein expression of the key biosynthetic enzyme GLUL in U2OS entails increased production of endogenous glutamine upon deprivation. The use of GLUL inhibitors dampens the NF-YA-mediated effect. NF-YA OE prevents activation of the pro-apoptotic transcription factor CHOP/DDIT3. Elevated basal levels of SERCA1/2, coding for the molecular target of Thapsigargin, correlate with resistance of NF-YA OE cells to the drug. The work represents a proof-of-principle that elevated levels of NF-YA, as found in some tumor types, helps altering cancer metabolic pathways.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Glutamina/metabolismo , Factor de Unión a CCAAT/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/deficiencia , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología , Factor de Transcripción CHOP/metabolismoRESUMEN
The aim of this study was to investigate the adhesive phenotype of the human intestinal isolate Bifidobacterium bifidum MIMBb75 to human colon carcinoma cell lines. We have previously shown that the adhesion of this strain to Caco-2 cells is mediated by an abundant surface lipoprotein named BopA. In this study, we found that this strain adheres to Caco-2 and HT-29 cells, and that its adhesion strongly depends on the environmental conditions, including the presence of sugars and bile salts and the pH. Considerably more adhesion to a Caco-2 monolayer occurred in the presence of fucose and mannose and less when MIMBb75 grew in Oxgall bile salts compared to standard environmental conditions. In particular, growth in Oxgall bile salts reduced the adhesion ability of MIMBb75 and modified the SDS-PAGE profile of the cell wall associated proteins of the strain. The pH markedly affected both adhesion to Caco-2 and bacterial autoaggregation. Finally, experiments with sodium metaperiodate suggested that not only proteinaceous determinants are involved in the adhesion process of B. bifidum. In conclusion, it seems that the colonization strategy of this bacterium can be influenced by factors varying along the gastrointestinal tract, such as the presence of specific sugars and bile salts and the pH, possibly limiting the adhesion of B. bifidum to only restricted distal sites of the gut.
Asunto(s)
Adhesión Bacteriana , Bifidobacterium/fisiología , Células Epiteliales/microbiología , Mucosa Intestinal/microbiología , Ácidos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Bifidobacterium/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Metabolismo de los Hidratos de Carbono , Línea Celular Tumoral , Pared Celular/química , Medios de Cultivo/química , Humanos , Concentración de Iones de HidrógenoRESUMEN
Cell Penetrating Peptides -CPPs- are short aminoacidic stretches present in proteins that have the ability to translocate the plasma membrane and facilitate delivery of various molecules. They are usually rich in basic residues, and organized as alpha helices. NF-Y is a transcription factor heterotrimer formed by two Histone Fold Domain -HFD- subunits and the sequence-specific NF-YA. NF-YA possesses two α-helices rich in basic residues. We show that it efficiently enters cells at nanomolar concentrations in the absence of carrier peptides. Mutagenesis identified at least two separate CPPs in the A1 and A2, which overlap with previously identified nuclear localization signals (NLS). The half-life of the transduced protein is short in human cancer cells, longer in mouse C2C12 myoblasts. The internalized NF-YA is capable of trimerization with the HFD subunits and binding to the target CCAAT box. Functionality is further suggested by protein transfection in C2C12 cells, leading to inhibition of differentiation to myotubes. In conclusion, NF-YA contains CPPs, hinting at novel -and unexpected- properties of this subunit.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Péptidos de Penetración Celular/metabolismo , Secuencia de Aminoácidos , Animales , Factor de Unión a CCAAT/genética , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Células HCT116 , Células HeLa , Humanos , Ratones , Mioblastos/metabolismo , Señales de Localización Nuclear/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , TransfecciónRESUMEN
We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.
Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Bacterianas/fisiología , Bifidobacterium/fisiología , Lipoproteínas/fisiología , Proteínas Bacterianas/aislamiento & purificación , Células CACO-2/microbiología , Pared Celular/fisiología , Colon/microbiología , Heces/microbiología , Humanos , Datos de Secuencia MolecularRESUMEN
Group A streptococci (GAS) cause 20-30% of pediatric pharyngitis episodes, which are a major cause of ambulatory care visits. Therefore, a strategy to prevent GAS dissemination in children could significantly benefit public healthcare. Contextually, we assessed the possibility of employing alternative food-grade strategies to be used with the oral probiotic L. helveticus MIMLh5 for the prevention of pharyngeal infections. First, we demonstrated through an antagonism-by-exclusion assay that guaran may potentially prevent S. pyogenes adhesion on pharyngeal cells. Subsequently, we showed that an anthocyanin-rich fraction extracted from wild blueberry (BbE) exerts anti-inflammatory effects on the human macrophage cell line U937. Finally, we showed that BbE reduces interferon-ß expression in MIMLh5-stimulated murine dendritic cells, resulting in a reduction in the pro-inflammatory cytokines IL-12 and TNF-α. In conclusion, this proof-of-concept study indicates that different food-grade strategies may be concomitantly adopted to potentially prevent GAS colonization and modulate local immune defences.
Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Arándanos Azules (Planta)/química , Carbohidratos/farmacología , Faringitis/prevención & control , Extractos Vegetales/farmacología , Probióticos/farmacología , Infecciones Estreptocócicas/prevención & control , Streptococcus pyogenes/efectos de los fármacos , Antocianinas/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Humanos , Interleucina-12/genética , Interleucina-12/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Faringitis/genética , Faringitis/inmunología , Faringitis/microbiología , Faringe/inmunología , Faringe/microbiología , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
Pole3 (DPB4/YBL1/CHRAC17) is one of the subunits of the DNA polymerase e. It contains a histone-like domain required for the hererodimerization with its Pole4 (DPB3) partner. In another interaction, Pole3 heterodimerizes with YCL1/CHRAC15 and associates with the ACF1/SNF2H remodelling complex. We find that the Pol3 gene is regulated in starved NIH3T3 fibroblasts upon induction with serum, with a peak at the entry in the S phase. We characterized the Pole3 promoter, which is linked bidirectionally to C9Orf46, a gene of unknown function: it has no CCAAT nor TATA-boxes, and contains an E box and two potential E2F sites. Mutagenesis analysis points to a minimal promoter region as sufficient for activation; the E box and a neighbouring direct repeat are important for regulation. Cell-cycle regulation was reproduced in stable clones and an additional E2F site was found to be important. Chromatin immunoprecipitation analysis indicates that E2F1/4, as well as MYC, are associated with the Pole3 promoter in a phase-specific way. These data highlight coregulation of a histone-like gene with core histones upon DNA synthesis, and represent a first dissection of the interplay between two essential cell-cycle regulators on a bidirectional promoter.
Asunto(s)
ADN Polimerasa II/biosíntesis , Regulación de la Expresión Génica/fisiología , Fase S/fisiología , Transcripción Genética/fisiología , Animales , Inmunoprecipitación de Cromatina/métodos , ADN Polimerasa II/genética , Histonas/biosíntesis , Histonas/genética , Ratones , Mutagénesis/genética , Células 3T3 NIH , Mutación Puntual , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína/genética , Elementos de Respuesta/genética , TATA Box/genéticaRESUMEN
Bacterial vaginosis is one of the most common urogenital diseases affecting women in reproductive age. The administration of probiotics as vaginal suppository has been proposed as a strategy to cure this condition and reduce its recurrence. Nonetheless, also oral consumption of probiotics, which is a more practical route of administration, proved to be an efficient strategy. In this perspective, we studied Lactobacillus paracasei LPC-S01 (DSM 26760), a human vaginal isolate included in commercial probiotic preparations for topical use, in order to assess if this bacterium can also perform as gastrointestinal probiotic. Comparative genomics revealed the presence of several accessory genes suggesting that LPC-S01 is a niche-generalist member of its species. According to a procedure conventionally used to predict the probiotic potential, we demonstrated that the probiotic properties of strain LPC-S01, with respect to those of the well-known probiotic references L. paracasei Shirota and DG, are equal for the bile tolerance and the reduction of NF-κB activation in Caco-2 cells, or superior for the tolerance to gastric juice and the adhesion to Caco-2 epithelial cells. We then demonstrated that LPC-S01 is susceptible to antibiotics indicated by EFSA and does not produce biogenic amines. Finally, a double-blind cross-over pilot intervention trial on healthy human volunteers showed that, after a 7-days oral consumption of capsules containing about 24 billion live cells, the fecal cell concentrations of strains LPC-S01 and DG (evaluated by qPCR) were not dissimilar. Specifically, both probiotics' cell concentrations were above the detection limit for an average of 5 days from the end of the treatment, corresponding to a mean number of evacuations of 7 ± 2. Taken together, these data demonstrate that the vaginal isolate L. paracasei LPC-S01 possesses safety and functional properties that may support its use as probiotic to be administered per os for potential intestinal as well as vaginal applications.
RESUMEN
Intestinal inflammation is a natural process crucial for the maintenance of gut functioning. However, abnormal or prolonged inflammatory responses may lead to the onset of chronic degenerative diseases, typically treated by means of pharmacological interventions. Dietary strategies for the prevention of inflammation are a safer alternative to pharmacotherapy. Anthocyanins and other polyphenols have been documented to display anti-inflammatory activity. In the present study, three bioactive fractions (anthocyanin, phenolic, and water-soluble fractions) were extracted from a wild blueberry powder. The Caco-2 intestinal model was used to test the immunomodulatory effect of the above fractions. Only the anthocyanin-rich fraction reduced the activation of NF-κB, induced by IL-1ß in intestinal epithelial Caco-2 cells. Specifically, concentrations of 50 and 100 µg mL(-1) decreased NF-κB activation by 68.9 and 85.2%, respectively (p ≤ 0.05). These preliminary results provide further support for the role of food bioactives as potential dietary anti-inflammatory agents.
Asunto(s)
Antocianinas/farmacología , Antiinflamatorios/farmacología , Arándanos Azules (Planta)/química , Intestinos/efectos de los fármacos , Extractos Vegetales/farmacología , Antocianinas/aislamiento & purificación , Células CACO-2 , Humanos , Inflamación/tratamiento farmacológico , Interleucina-1beta/inmunología , Intestinos/inmunología , Modelos Biológicos , FN-kappa B/inmunología , Extractos Vegetales/aislamiento & purificaciónRESUMEN
The TFPT/FB1 gene was identified because of its involvement in childhood pre-B acute lymphoblastic leukaemia (ALL). Although its specific function is still unclear, Tfpt has been implicated in cell proliferation and induction of programmed cell death (PCD). Given the critical role of PCD in leukemogenesis, we have investigated the responsiveness of different cell lines to TFPT over expression and the consequent induction of PCD by proliferation kinetic analysis, immunolocalization and TUNEL assay. We have also tested the involvement of factors implicated in cell cycle progression and apoptosis, i.e. caspases, p53, Cdc2. Our results indicate that over expression of TFPT promotes caspase 9-dependent apoptosis, nevertheless the apoptotic cascade is engaged only in culture conditions sustaining cell proliferation and different cell lines display differential responsiveness to TFPT induced apoptosis Although p53 is a main regulator of apoptosis in mammalian cells, the Tfpt induced apoptosis appears p53-independent. These results are discussed relatively to the role played by TFPT in leukemogenesis.
Asunto(s)
Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción TCF/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caspasas/metabolismo , Recuento de Células , Proliferación Celular , Activación Enzimática , Expresión Génica , Células HeLa , Humanos , Etiquetado Corte-Fin in Situ , Cinética , Ratones , Modelos Biológicos , Células 3T3 NIH , Unión Proteica , Proteína 1 Similar al Factor de Transcripción 7RESUMEN
Eukaryotic cells respond to a variety of DNA insults by triggering a common signal transduction cascade, known as checkpoint response, which temporarily halts cell-cycle progression. Although the main players involved in the cascade have been identified, there is still uncertainty about the nature of the structures that activate these surveillance mechanisms. To understand the role of nucleotide excision repair (NER) in checkpoint activation, we analyzed the UV-induced phosphorylation of the key checkpoint proteins Chk1 and p53, in primary fibroblasts from patients with xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy (TTD), or UV light-sensitive syndrome. These disorders are due to defects in transcription-coupled NER (TC-NER) and/or global genome NER (GG-NER), the NER subpathways repairing the transcribed strand of active genes or the rest of the genome, respectively. We show here that in G0/G1 and G2/M phases of the cell cycle, triggering of the DNA damage cascade requires recognition and processing of the lesions by the GG-NER. Loss of TC-NER does not affect checkpoint activation. Mutations in XPD, XPB, and in TTDA, encoding subunits of the TFIIH complex, involved in both transcription and NER, impair checkpoint triggering. The only exception is represented by mutations in XPD, resulting in combined features of XP and CS (XP/CS) that lead to activation of the checkpoint cascade after UV radiation. Inhibition of RNA polymerase II transcription significantly reduces the phosphorylation of key checkpoint factors in XP/CS fibroblasts on exposure to UV damage.
Asunto(s)
Reparación del ADN/genética , ADN/genética , Transducción de Señal , Células Cultivadas , Fibroblastos , Genoma Humano/genética , Humanos , Transcripción Genética/genética , Xerodermia Pigmentosa/genéticaRESUMEN
Yondelis is a potent DNA-binding anticancer drug isolated from the tunicate Ecteinascidia turbinata currently undergoing phase III clinical trials. We and others have shown selective inhibition to the transcriptional induction of several genes. We tested the hypothesis that Yondelis specifically targets cell-cycle genes. Our analysis on endogenous and transfected reporter systems revealed complex patterns of transcriptional inhibition and, surprisingly, activation. Other inducible systems-the metallothionein and the CYP3A4 promoters-were little affected. We assayed whether interference of DNA binding of the common nuclear factor Y (NF-Y) activator was responsible for the observed inhibition: in vivo chromatin immunoprecipitation analysis in NIH3T3 and HCT116 cells indicates that NF-Y binding is little affected by Yondelis addition. Finally, histone acetylation was modestly affected only on Cdc2 and cyclin B2 but not on other repressed promoters. These data prove that Yondelis is not a general inhibitor of inducible genes, and its selective effects are exerted downstream from transcription factors binding and histone acetyl transferases recruitment.
Asunto(s)
Antineoplásicos/farmacología , Ciclo Celular/genética , Dioxoles/farmacología , Isoquinolinas/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , Animales , Factor de Unión a CCAAT/metabolismo , ADN/metabolismo , Ratones , Células 3T3 NIH , Tetrahidroisoquinolinas , Trabectedina , Transcripción Genética/efectos de los fármacosRESUMEN
Rad17-Mec3-Ddc1 forms a proliferating cell nuclear antigen-like complex that is required for the DNA damage response in Saccharomyces cerevisiae and acts at an early step of the signal transduction cascade activated by DNA lesions. We used the mec3-dn allele, which causes a dominant negative checkpoint defect in G1 but not in G2, to test the stability of the complex in vivo and to correlate its assembly and disassembly with the mechanisms controlling checkpoint activation. Under physiological conditions, the mutant complex is formed both in G1 and G2, although the mutant phenotype is detectable only in G1, suggesting that is not the presence of the mutant complex per se to cause a checkpoint defect. Our data indicate that the Rad17-Mec3-Ddc1 complex is very stable, and it takes several hours to replace Mec3 with Mec3-dn within a wild type complex. On the other hand, the mutant complex is rapidly assembled when starting from a condition where the complex is not pre-assembled, indicating that the critical factor for the substitution is the disassembly step rather than complex formation. Moreover, the kinetics of mutant complex assembly, starting from conditions in which the wild type form is present, parallels the kinetics of checkpoint inactivation, suggesting that the complex acts in a stoichiometric way, rather than catalytically.