Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Insects ; 12(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34442306

RESUMEN

(1) Modern, intensive agricultural practices have been attributed to the loss of insect biodiversity and abundance in agroecosystems for the last 80 years. The aim of this work is to test whether there are statistically significant differences in insect abundance between different zones and over time on the vineyard field. (2) The study was carried out in five intensive wine farms in Spain over a three-year period (2013-2015). Each field was divided into two zones, one where cover plants were planted, and another remained unchanged (without cover). (3) A clear trend to increase the average number of insect species and individuals throughout the years in all farms was observed. Moreover, the zones with cover plants showed a significant difference with respect to the zones without. (4) The use of permanent cover plants allows creating areas of refuge for the insects favouring their conservation and reducing the agriculture impact in the insect decline.

2.
Front Plant Sci ; 11: 604898, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414799

RESUMEN

Used mainly for sucrose production, sugar beet is one of the most important crops in Castilla y León (Spain). Several studies have demonstrated the benefits of microorganisms in different crop management programs, among which Plant Growth Promoting Rhizobacteria (PGPR). This research aims to assess the beneficial effects of two PGPRs strains (Pseudomonas fluorescens Pf0-1 and Pseudomonas chlororaphis CECT 462) on sugar beet (Beta vulgaris) production. Three treatments: a PGPRs co-inoculation assay of untreated seeds without any chemical treatment (TB), a conventional treatment with commercial seeds and fungicide application (TT); and a control with seeds without protective coating, bacterial inoculation and chemical treatment (ST). The efficacy of PGPRs inoculation on sugar beet production was determined measuring periodically the photosynthetic status of plants, and the final yield and quality of tubers. Aerial and root plant biomass, maximum beet perimeter, polarization, and sugar values of the sugar beet plants inoculated with PGPRs showed higher values and significant differences to sugar beet subjected to other treatments. We could see that PGPRs inoculation (TB treatment) produced significant differences in the quantum yield of PSII (ΦPSII). TB showed the highest value for ΦPSII and the NPQ (non-photochemical quenching), the lowest value, even though the PSII (maximum quantum yield of photosystem II) was very similar in all treatments. The two assayed PGPR strains triggered a significant increase in sugar beet production yield and quality. PGPRs inoculation techniques could be used in different crops and they could be applied as biofertilizers, improving the agricultural production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA