Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(5): 930-944.e22, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525758

RESUMEN

The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization.


Asunto(s)
Cromosomas de los Mamíferos/química , Animales , Factor de Unión a CCCTC , Ciclo Celular , Cromatina/metabolismo , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Ácidos Indolacéticos/farmacología , Ratones , Proteínas Represoras/metabolismo , Transcripción Genética
2.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38521067

RESUMEN

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Asunto(s)
Cromosomas , ADN-Topoisomerasas de Tipo II , ADN-Topoisomerasas de Tipo II/genética , Cromosomas/genética , Mitosis/genética , Interfase/genética , Polímeros
3.
Cell ; 163(1): 134-47, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26365489

RESUMEN

Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.


Asunto(s)
Cromatina/metabolismo , Lámina Nuclear/metabolismo , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Cromatina/química , Cromosomas/química , Cromosomas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Hibridación Fluorescente in Situ , Interfase
5.
Nature ; 606(7912): 197-203, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585235

RESUMEN

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , ADN , Proteínas de Mantenimiento de Minicromosoma , Animales , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/metabolismo , Fase G1 , Células HCT116 , Humanos , Ratones , Componente 3 del Complejo de Mantenimiento de Minicromosoma/química , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
6.
Mol Cell ; 78(3): 554-565.e7, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32213324

RESUMEN

Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.


Asunto(s)
Cromosomas Humanos/ultraestructura , Animales , Factor de Unión a CCCTC/metabolismo , Células Cultivadas , Cromatina/química , Cromosomas de los Mamíferos/ultraestructura , Células Madre Embrionarias/citología , Fibroblastos/citología , Humanos , Masculino , Mamíferos/genética , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Relación Señal-Ruido
7.
EMBO J ; 41(13): e110600, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35703121

RESUMEN

Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.


Asunto(s)
Epigénesis Genética , Células Germinativas , Animales , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Epigenómica , Femenino , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Ratones , Espermatogonias
8.
Immunity ; 46(1): 65-77, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27986456

RESUMEN

The cell fate decision between interferon-producing plasmacytoid DC (pDC) and antigen-presenting classical DC (cDC) is controlled by the E protein transcription factor TCF4 (E2-2). We report that TCF4 comprises two transcriptional isoforms, both of which are required for optimal pDC development in vitro. The long Tcf4 isoform is expressed specifically in pDCs, and its deletion in mice impaired pDCs development and led to the expansion of non-canonical CD8+ cDCs. The expression of Tcf4 commenced in progenitors and was further upregulated in pDCs, correlating with stage-specific activity of multiple enhancer elements. A conserved enhancer downstream of Tcf4 was required for its upregulation during pDC differentiation, revealing a positive feedback loop. The expression of Tcf4 and the resulting pDC differentiation were selectively sensitive to the inhibition of enhancer-binding BET protein activity. Thus, lineage-specifying function of E proteins is facilitated by lineage-specific isoform expression and by BET-dependent feedback regulation through distal regulatory elements.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Linaje de la Célula , Inmunoprecipitación de Cromatina , Células Dendríticas/citología , Citometría de Flujo , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Factor de Transcripción 4 , Transcriptoma
9.
Mol Cell ; 72(4): 715-726.e3, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30415953

RESUMEN

Compared to noncoding RNAs (ncRNAs), such as rRNAs and ribozymes, for which high-resolution structures abound, little is known about the tertiary structures of mRNAs. In eukaryotic cells, newly made mRNAs are packaged with proteins in highly compacted mRNA particles (mRNPs), but the manner of this mRNA compaction is unknown. Here, we developed and implemented RIPPLiT (RNA immunoprecipitation and proximity ligation in tandem), a transcriptome-wide method for probing the 3D conformations of RNAs stably associated with defined proteins, in this case, exon junction complex (EJC) core factors. EJCs multimerize with other mRNP components to form megadalton-sized complexes that protect large swaths of newly synthesized mRNAs from endonuclease digestion. Unlike ncRNPs, wherein strong locus-specific structures predominate, mRNPs behave more like flexible polymers. Polymer analysis of proximity ligation data for hundreds of mRNA species demonstrates that nascent and pre-translational mammalian mRNAs are compacted by their associated proteins into linear rod-like structures.


Asunto(s)
Precursores del ARN/ultraestructura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestructura , Núcleo Celular , Exones , Células HEK293 , Humanos , Inmunoprecipitación/métodos , Procesamiento Proteico-Postraduccional , Precursores del ARN/genética , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/ultraestructura , ARN no Traducido , Empalmosomas , Transcripción Genética
10.
Proc Natl Acad Sci U S A ; 120(11): e2210480120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897969

RESUMEN

Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Animales , Ratones , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas de los Mamíferos/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA