Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Semin Cancer Biol ; 91: 99-109, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36893964

RESUMEN

The circadian rhythm is regulated by an intrinsic time-tracking system, composed both of a central and a peripheral clock, which influences the cycles of activities and sleep of an individual over 24 h. At the molecular level, the circadian rhythm begins when two basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins, BMAL-1 and CLOCK, interact with each other to produce BMAL-1/CLOCK heterodimers in the cytoplasm. The BMAL-1/CLOCK target genes encode for the repressor components of the clock, cryptochrome (Cry1 and Cry2) and the Period proteins (Per1, Per2 and Per3). It has been recently demonstrated that the disruption of circadian rhythm is associated with an increased risk of developing obesity and obesity-related diseases. In addition, it has been demonstrated that the disruption of the circadian rhythm plays a key role in tumorigenesis. Further, an association between the circadian rhythm disruptions and an increased incidence and progression of several types of cancer (e.g., breast, prostate, colorectal and thyroid cancer) has been found. As the perturbation of circadian rhythm has adverse metabolic consequences (e.g., obesity) and at the same time tumor promoter functions, this manuscript has the aim to report how the aberrant circadian rhythms affect the development and prognosis of different types of obesity-related cancers (breast, prostate, colon rectal and thyroid cancer) focusing on both human studies and on molecular aspects.


Asunto(s)
Ritmo Circadiano , Neoplasias de la Tiroides , Masculino , Humanos , Ritmo Circadiano/genética , Criptocromos/genética , Proteínas Circadianas Period/genética , Obesidad/complicaciones
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255977

RESUMEN

Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.


Asunto(s)
Traumatismos de los Nervios Periféricos , Animales , Ratones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ácido Ursólico , Nervio Ciático , Suplementos Dietéticos , Fibras Musculares Esqueléticas
3.
Int J Mol Sci ; 25(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39456864

RESUMEN

The search and development of effective sirtuin small molecule inhibitors (SIRTIs) continues to draw great attention due to their wide range of pharmacological applications. Based on SIRTs' involvement in different biological pathways, their ligands were investigated for many diseases, such as cancer, neurodegenerative disorders, diabetes, cardiovascular diseases and autoimmune diseases. The elucidation of a substantial number of SIRT2-ligand complexes is steering the identification of novel and more selective modulators. Among them, SIRT2 in the presence of the SirReal2 analog series was the most studied. On this basis, we recently reported structure-based analyses leading to the discovery of thiazole-based compounds acting as SIRT2 inhibitors (T1, SIRT2 IC50 = 17.3 µM). Herein, ligand-based approaches followed by molecular docking simulations allowed us to evaluate in silico a novel small series of thiazoles (3a-3d and 5a, 5d) as putative SIRT2 inhibitors. Results from the computational studies revealed comparable molecular interaction fields (MIFs) and docking positionings of most of these compounds with respect to reference SIRT2Is. Biochemical and biological assays validated this study and pointed to compound 5a (SIRT2 IC50 = 9.0 µM) as the most interesting SIRT2I that was worthy of further development as an anticancer agent.


Asunto(s)
Antineoplásicos , Simulación del Acoplamiento Molecular , Sirtuina 2 , Tiazoles , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/química , Sirtuina 2/metabolismo , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Descubrimiento de Drogas , Modelos Moleculares , Ligandos , Línea Celular Tumoral
4.
Pharmacol Res ; 189: 106685, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773711

RESUMEN

The iodothyronine deiodinases constitute a family of three selenoenzymes regulating the intracellular metabolism of Thyroid Hormones (THs, T4 and T3) and impacting on several physiological processes, including energy metabolism, development and cell differentiation. The type 1, 2 and 3 deiodinases (D1, D2, and D3), are sensitive, rate-limiting components within the TH axis, and rapidly control TH action in physiological conditions or disease. Notably, several human pathologies are characterized by deiodinases deregulation (e.g., inflammation, osteoporosis, metabolic syndrome, muscle wasting and cancer). Consequently, these enzymes are golden targets for the identification and development of pharmacological compounds endowed with modulatory activities. However, until now, the portfolio of inhibitors for deiodinases is limited and the few active compounds lack selectivity. Here, we describe the cephalosporin Cefuroxime as a novel D2 specific inhibitor. In both in vivo and in vitro settings, Cefuroxime acts as a selective inhibitor of D2 activity, without altering the enzymatic activity of D1 and D3. By inhibiting TH activation in target tissues, Cefuroxime alters the sensitivity of the hypothalamus-pituitary axis and interferes with the central regulation of THs levels, and is thus eligible as a potential new regulator of hyperthyroid pathologies, which affect thousands of patients worldwide.


Asunto(s)
Cefuroxima , Yoduro Peroxidasa , Humanos , Yoduro Peroxidasa/metabolismo , Reposicionamiento de Medicamentos , Hormonas Tiroideas/metabolismo , Diferenciación Celular
5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569453

RESUMEN

Skeletal muscle (SkM) lipid composition plays an essential role in physiological muscle maintenance and exercise performance. Thyroid hormones (THs) regulate muscle formation and fuel energy utilization by modulating carbohydrates and lipid and protein metabolism. The best-known effects of THs in SkM include the promotion of mitochondrial biogenesis, the fiber-type switch from oxidative to glycolytic fibers, and enhanced angiogenesis. To assess the role of THs on the lipidic composition of SkM fibers, we performed lipidomic analyses of SkM cells and tissues, glucose tolerance experiments, and exercise performance tests. Our data demonstrated that TH treatment induces remodeling of the lipid profile and changes the proportion of fatty acids in SkM. In brief, THs significantly reduced the ratio of stearic/oleic acid in the muscle similar to what is induced by physical activity. The increased proportion of unsaturated fatty acids was linked to an improvement in insulin sensitivity and endurance exercise. These findings point to THs as critical endocrine factors affecting exercise performance and indicate that homeostatic maintenance of TH signals, by improving cell permeability and receptor stability at the cell membrane, is crucial for muscle physiology.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hormonas Tiroideas/metabolismo , Ejercicio Físico , Ácidos Grasos/metabolismo
6.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281225

RESUMEN

Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the ß3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells.


Asunto(s)
Células Musculares/fisiología , Músculo Esquelético/fisiología , Hormonas Tiroideas/fisiología , Animales , Diferenciación Celular , Integrina beta3/fisiología , Yoduro Peroxidasa/fisiología , Ratones , Músculo Esquelético/citología , Yodotironina Deyodinasa Tipo II
7.
J Basic Clin Physiol Pharmacol ; 35(4-5): 253-264, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39297559

RESUMEN

Thyroid hormones (THs) are critical regulators of muscle metabolism in both healthy and unhealthy conditions. Acting concurrently as powerful anabolic and catabolic factors, THs are endowed with a vital role in muscle mass maintenance. As a result, thyroid dysfunctions are the leading cause of a wide range of muscle pathologies, globally identified as myopathies. Whether muscle wasting is a common feature in patients with hyperthyroidism and is mainly caused by THs-dependent stimulation of muscle proteolysis, also muscle growth is often associated with hyperthyroid conditions, linked to THs-dependent stimulation of muscle protein synthesis. Noteworthy, also hypothyroid status negatively impacts on muscle physiology, causing muscle weakness and fatigue. Most of these symptoms are due to altered balance between muscle protein synthesis and breakdown. Thus, a comprehensive understanding of THs-dependent skeletal muscle protein turnover might facilitate the management of physical discomfort or weakness in conditions of thyroid disease. Herein, we describe the molecular mechanisms underlying the THs-dependent alteration of skeletal muscle structure and function associated with muscle atrophy and hypertrophy, thus providing new insights for targeted modulation of skeletal muscle dynamics.


Asunto(s)
Hipertiroidismo , Proteínas Musculares , Músculo Esquelético , Atrofia Muscular , Hormonas Tiroideas , Humanos , Hormonas Tiroideas/metabolismo , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/biosíntesis , Animales , Hipertiroidismo/metabolismo , Atrofia Muscular/metabolismo , Proteolisis , Hipotiroidismo/metabolismo
8.
Eur Thyroid J ; 12(3)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930264

RESUMEN

There is increasing evidence that thyroid hormones (THs) work in an integrative fashion with androgen receptors (ARs) to regulate gonadal differentiation and reproductive function. Studies reveal that THs have interactions with the AR promoter region and increase AR expression. THs also have a role in the regulation of enzymes involved in the biosynthesis of androgens, such as 5α-reductase, which is essential in the conversion of testosterone into its active form, 5α-dihydrotestosterone. Additionally, the presence of androgen response elements in the promoter regions of TH-related genes, such as deiodinases and TH receptor isoforms, has been identified in some vertebrates, indicating a mutual interaction between THs and ARs. Since the androgen signaling pathway, mediated by ARs, plays a key role in the formation and progression of prostate cancer (PCa), the existence of crosstalk between THs and ARs supports the epidemiologic and experimental evidence indicating a relationship between the high incidence of PCa and hyperthyroidism. This article aims to review the role of androgen-TH crosstalk in PCa and its implication in clinical management. As life expectancy is growing these days, it can increase the number of patients with PCa and the critical relevance of the disease. In order to gain better knowledge about PCa and to improve clinical management, it is essential to get better insight into the key factors related to the formation and progression of this cancer.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Masculino , Animales , Humanos , Andrógenos/genética , Neoplasias de la Próstata/genética , Hormonas Tiroideas/metabolismo , Receptores Androgénicos/genética , Dihidrotestosterona/metabolismo
9.
Endocr Relat Cancer ; 30(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692310

RESUMEN

Treatment with tyrosine kinase inhibitors (TKIs) has been associated with alterations in circulating thyroid hormone levels, possibly related to perturbations in peripheral thyroid hormone metabolism. In this study, we evaluated the effect of the multi-kinase inhibitor vandetanib on the expression of the three deiodinase selenoenzymes, responsible for the thyroid hormone activation (type 1 and type 2 deiodinases) or for its inactivation (type 3 deiodinase). Here, we show that the multi-kinase inhibitor vandetanib determines a strong cell-specific downregulation of type 2 deiodinase (D2) expression and a significant reduction in D2 enzymatic activity. This occurs in the diffused population of fibro/adipogenic progenitors, which reside in different tissues - including the muscles - and normally express D2. Given the widespread diffusion of mesenchymal cells within the body, our results may explain at least partially the alterations in thyroid hormone levels that occur in vandetanib-treated patients. Our findings represent a step forward into the understanding of the mechanisms by which TKIs induce hypothyroidism and identify a resident cell population in which such an effect takes place.


Asunto(s)
Hipotiroidismo , Yoduro Peroxidasa , Humanos , Yoduro Peroxidasa/metabolismo , Hormonas Tiroideas/metabolismo , Piperidinas/farmacología
10.
Biomed Pharmacother ; 166: 115326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611438

RESUMEN

Sirtuin 6 (SIRT6) has a critical role in cutaneous Squamous Cell Carcinoma (cSCC): SIRT6 silencing in skin SCC cells has pro-differentiating effects and SIRT6 deletion abrogated DMBA-TPA-induced skin tumorigenesis in mice. On the other hand, SIRT6 acts as tumor suppressor in SCC by enhancing glycolysis in tumor propagating cells. Herein, pharmacological modulation of SIRT6 deacetylase activity was investigated in cSCC, with S6 (inhibitor) or MDL-800 (activator). In cSCC cells, S6 recreated the pro-differentiating effects of SIRT6 silencing, as the levels of Keratin 1, Keratin 10 and Loricrin were upregulated compared to controls. Next, the effects of SIRT6 pharmacological modulation were evaluated in a DMBA-TPA-induced skin cancer mouse model. Mice treated with the inhibitor S6 in a preventive approach, i.e. at the beginning of the promotion stage, presented reduced number and size of papillomas, compared to the controls. The epidermal hyperproliferation marker Keratin 6 and the cSCC marker Keratin 8 were less abundant when SIRT6 was inhibited. In S6-treated lesions, the Epithelial-Mesenchymal Transition (EMT) markers Zeb1 and Vimentin were less expressed compared to untreated lesions. In a therapeutic approach, i.e. treatment starting after papilloma appearance, the S6 group presented reduced papillomas (number and size), whereas MDL-800-treated mice displayed an opposite trend. In S6-treated lesions, Keratin 6 and Keratin 8 were less expressed, EMT was less advanced, with a higher E-cadherin/Vimentin ratio, indicating a delayed carcinogenesis when SIRT6 was inhibited. Our results confirm that SIRT6 plays a role in skin carcinogenesis and suggest SIRT6 pharmacological inhibition as a promising strategy in cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Papiloma , Sirtuinas , Neoplasias Cutáneas , Animales , Ratones , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Queratina-8 , Vimentina , Queratina-6 , Carcinogénesis
11.
Nat Commun ; 14(1): 1244, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871014

RESUMEN

The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.


Asunto(s)
Yoduro Peroxidasa , Proteína p53 Supresora de Tumor , Daño del ADN , Ejercicio Físico , Terapia Genética
12.
Metabolites ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629909

RESUMEN

Skeletal muscle is a key energy-regulating organ, skilled in rapidly boosting the rate of energy production and substrate consumption following increased workload demand. The alteration of skeletal muscle metabolism is directly associated with numerous pathologies and disorders. Thyroid hormones (THs) and their receptors (TRs, namely, TRα and TRß) exert pleiotropic functions in almost all cells and tissues. Skeletal muscle is a major THs-target tissue and alterations of THs levels have multiple influences on the latter. However, the biological role of THs and TRs in orchestrating metabolic pathways in skeletal muscle has only recently started to be addressed. The purpose of this paper is to investigate the muscle metabolic response to TRs abrogation, by using two different mouse models of global TRα- and TRßKO. In line with the clinical features of resistance to THs syndromes in humans, characterized by THRs gene mutations, both animal models of TRs deficiency exhibit developmental delay and mitochondrial dysfunctions. Moreover, using transcriptomic and metabolomic approaches, we found that the TRs-THs complex regulates the Fatty Acids (FAs)-binding protein GOT2, affecting FAs oxidation and transport in skeletal muscle. In conclusion, these results underline a new metabolic role of THs in governing muscle lipids distribution and metabolism.

13.
Cell Rep ; 38(8): 110409, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196498

RESUMEN

Thyroid hormones (THs) are key metabolic regulators coordinating short- and long-term energy needs. In skeletal muscle, THs modulate energy metabolism in pathophysiological conditions. Indeed, hypo- and hyperthyroidism are leading causes of muscle weakness and strength; however, the metabolic pathways underlying these effects are still poorly understood. Using molecular, biochemical, and isotope-tracing approaches combined with mass spectrometry and denervation experiments, we find that THs regulate glutamine metabolism and anaplerotic fluxes by up-regulating the glutamate pyruvate transaminase 2 (GPT2) gene. In humans, GPT2 autosomal recessive mutations cause a neurological syndrome characterized by intellectual disability, microcephaly, and progressive motor symptoms. Here, we demonstrate a role of the TH/GPT2 axis in skeletal muscle in which it regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. These results describe an anabolic route by which THs rewire glutamine metabolism toward the maintenance of muscle mass.


Asunto(s)
Glutamina , Discapacidad Intelectual , Alanina Transaminasa , Glutamina/metabolismo , Humanos , Discapacidad Intelectual/genética , Hormonas Tiroideas , Transaminasas
14.
Cancer Lett ; 532: 215581, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134514

RESUMEN

Prostate Cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in males and the fifth leading cause of death worldwide. The majority of PCas are androgen-sensitive, with a significant up-regulation of Androgen Receptor (AR) that causes a stimulatory effect on growth and progression of cancer cells. For this reason, the first-line therapy for PCa is androgen ablation, even if it ultimately fails due to the onset of hormone-refractory state, in which the malignant cells do not sense the androgen signal anymore. Besides androgens, a growing number of evidence suggests that Thyroid Hormones (THs) mediate tumor-promoting effects in a variety of human cancers, as Epithelial-to-Mesenchymal Transition (EMT), invasion and metastasis and also stimulation of angiogenesis and tumor metabolism. Moreover, epidemiological studies demonstrated an increased risk for PCa in patients with lower levels of Thyreotropin (TSH). Here, we investigated if intracellular TH metabolism affects Benign Prostatic Hyperplasia (BPH) and PCa formation and progression. We found that the intracellular TH metabolism is a crucial determinant of PCa behavior. We observed that a dynamic stage-specific expression of the THs modulating enzymes, the deiodinases, is required for the progression of BPH to PCa malignancy. By acting simultaneously on epithelial cancer cells and fibroblasts, THs exert a proliferative and pro-inflammatory effect cooperating with androgens. These findings suggest that androgens and THs may interplay and mediate a coordinate effect on human PCa formation and progression. In light of our results, future perspective could be to explore the potential benefits of THs intracellular modulators aimed to counteract PCa progression.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Andrógenos/metabolismo , Carcinogénesis , Línea Celular Tumoral , Humanos , Inflamación , Masculino , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Hormonas Tiroideas , Microambiente Tumoral
15.
Cancers (Basel) ; 13(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205977

RESUMEN

Cancer angiogenesis is required to support energetic demand and metabolic stress, particularly during conditions of hypoxia. Coupled to neo-vasculogenesis, cancer cells rewire metabolic programs to sustain growth, survival and long-term maintenance. Thyroid hormone (TH) signaling regulates growth and differentiation in a variety of cell types and tissues, thus modulating hyper proliferative processes such as cancer. Herein, we report that TH coordinates a global program of metabolic reprogramming and induces angiogenesis through up-regulation of the VEGF-A gene, which results in the enhanced proliferation of tumor endothelial cells. In vivo conditional depletion of the TH activating enzyme in a mouse model of cutaneous squamous cell carcinoma (SCC) reduces the concentration of TH in the tumoral cells and results in impaired VEGF-A production and attenuated angiogenesis. In addition, we found that TH induces the expression of the glycolytic genes and fosters lactate production, which are key traits of the Warburg effect. Taken together, our results reveal a TH-VEGF-A-HIF1α regulatory axis leading to enhanced angiogenesis and glycolytic flux, which may represent a target for SCC therapy.

16.
J Pers Med ; 11(3)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799349

RESUMEN

Melanoma is the most lethal form of skin cancer and its incidence is growing worldwide. In the last ten years, the therapeutic scenario of this disease has been revolutionized by the introduction of targeted therapies and immune-checkpoint inhibitors. However, in patients with many lesions and bulky tumors, in which surgery is no longer feasible, there is a need for new treatment options. Here we report, for the first time to our knowledge, a clinical case where a melanoma patient harboring the SMO p.Gln216Arg mutation has been treated with imiquimod, showing a complete and durable response. To better explain this outstanding response to the treatment, we transfected a melanoma cell line (MeWo) with the SMO p.Gln216Arg mutation in order to evaluate its role in response to the imiquimod treatment. Moreover, to better demonstrate that the antitumor activity of imiquimod was due to its role in suppressing the oncogenic SMO signaling pathway, independently of its immune modulating function, an in vivo experiment has been performed. This clinical case opens up a new scenario for the treatment of melanoma patients identifying a new potentially druggable target.

17.
Cancers (Basel) ; 12(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197405

RESUMEN

Type 2 deiodinase (D2), the principal activator of thyroid hormone (TH) signaling in target tissues, is expressed in cutaneous squamous cell carcinomas (SCCs) during late tumorigenesis, and its repression attenuates the invasiveness and metastatic spread of SCC. Although D2 plays multiple roles in cancer progression, nothing is known about the mechanisms regulating D2 in cancer. To address this issue, we investigated putative upstream regulators of D2 in keratinocyte carcinomas. We found that the expression of D2 in SCC cells is positively regulated by the NANOG transcription factor, whose expression, besides being causally linked to embryonic stemness, is associated with many human cancers. We also found that NANOG binds to the D2 promoter and enhances D2 transcription. Notably, blockage of D2 activity reduced NANOG-induced cell migration as well as the expression of key genes involved in epithelial-mesenchymal transition in SCC cells. In conclusion, our study reveals a link among endogenous endocrine regulators of cancer, thyroid hormone and its activating enzyme, and the NANOG regulator of cancer biology. These findings could provide the basis for the development of TH inhibitors as context-dependent anti-tumor agents.

18.
Thyroid ; 30(7): 1066-1078, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32111151

RESUMEN

Background: Thyroid hormones (THs) are key regulators of development, tissue differentiation, and maintenance of metabolic balance in virtually every cell of the body. Accordingly, severe alteration of TH action during fetal life leads to permanent deficits in humans. The skin is among the few adult tissues expressing the oncofetal protein type 3 deiodinase (D3), the TH inactivating enzyme. Here, we demonstrate that D3 is dynamically regulated during epidermal ontogenesis. Methods: To investigate the function of D3 in a postdevelopmental context, we used a mouse model of conditional epidermal-specific D3 depletion. Loss of D3 resulted in tissue hypoplasia and enhanced epidermal differentiation in a cell-autonomous manner. Results: Accordingly, wound healing repair and hair follicle cycle were altered in the D3-depleted epidermis. Further, in vitro ablation of D3 in primary culture of keratinocytes indicated that various markers of stratified epithelial layers were upregulated, thereby confirming the pro-differentiative action of D3 depletion and the consequent increased intracellular triiodothyronine levels. Notably, loss of D3 reduced the clearance of systemic TH in vivo, thereby demonstrating the critical requirement for epidermal D3 in the maintenance of TH homeostasis. Conclusion: In conclusion, our results show that the D3 enzyme is a key TH-signaling component in the skin, thereby providing a striking example of a physiological context for deiodinase-mediated TH metabolism, as well as a rationale for therapeutic manipulation of deiodinases in pathophysiological contexts.


Asunto(s)
Diferenciación Celular/genética , Epidermis/metabolismo , Yoduro Peroxidasa/metabolismo , Queratinocitos/metabolismo , Animales , Homeostasis/fisiología , Yoduro Peroxidasa/genética , Queratinocitos/citología , Ratones , Ratones Noqueados , Hormonas Tiroideas/metabolismo
20.
Redox Biol ; 24: 101228, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31153038

RESUMEN

Thyroid hormone (TH) is a key metabolic regulator that acts by coordinating short- and long-term energy needs. Accordingly, significant metabolic changes are observed depending on thyroid status. Although it is established that hyperthyroidism augments basal energy consumption, thus resulting in an enhanced metabolic state, the net effects on cellular respiration and generation of reactive oxygen species (ROS) remain unclear. To elucidate the effects of augmented TH signal in muscle cells, we generated a doxycycline-inducible cell line in which the expression of the TH-activating enzyme, type 2 deiodinase (D2), is reversibly turned on by the "Tet-ON" system. Interestingly, increased intracellular TH caused a net shift from oxidative phosphorylation to glycolysis and a consequent increase in the extracellular acidification rate. As a result, mitochondrial ROS production, and both the basal and doxorubicin-induced production of cellular ROS were reduced. Importantly, the expression of a set of antioxidant genes was up-regulated, and, among them, the mitochondrial scavenger Sod2 was specifically induced at transcriptional level by D2-mediated TH activation. Finally, we observed that attenuation of oxidative stress and increased levels of SOD2 are key elements of the differentiating cascade triggered by TH and D2, thereby establishing that D2 is essential in coordinating metabolic reprogramming of myocytes during myogenic differentiation. In conclusion, our findings indicate that TH plays a key role in oxidative stress dynamics by regulating ROS generation. Our novel finding that TH and its intracellular metabolism act as mitochondrial detoxifying agents sheds new light on metabolic processes relevant to muscle physiology.


Asunto(s)
Yoduro Peroxidasa/metabolismo , Mitocondrias/metabolismo , Desarrollo de Músculos , Oxidación-Reducción , Estrés Oxidativo , Hormonas Tiroideas/metabolismo , Animales , Antioxidantes/metabolismo , Glucólisis , Masculino , Ratones , Desarrollo de Músculos/genética , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA