Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 39(49): 17844-17852, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033265

RESUMEN

Optically transparent and colored elastomers with high toughness are expected to play an important role in the construction of advanced medical materials, wearable displays, and soft robots. In this study, we found that composite elastomers consisting of amorphous SiO2 particles homogeneously dispersed in high concentrations within a biocompatible acrylic polymer network exhibit optical transparency and bright structural colors. In the composite elastomers, the system in which the SiO2 particles form a colloidal amorphous array hardly changes its structural color hue despite deformation due to elongation. Furthermore, the composite elastomer of the SiO2 particles with the acrylic polymer network also results in high mechanical toughness. In summary, we have shown that the elastomer that exhibits fade-resistant structural coloration formed from safe materials can combine stable coloration and mechanical strength independent of their shape. This is expected to have new potential in future technologies to support our daily life.

2.
Chem Pharm Bull (Tokyo) ; 68(2): 150-154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32009082

RESUMEN

Singlet oxygen (1O2) is highly oxidative and exerts strong cytotoxic effects. We tried to establish the best combination of a singlet oxygen generation system and a detection method with ESR, for measurement of the quenching activities of various substances. The photosensitizing reaction of rose bengal or thermal decomposition of 4-methyl-1,4-etheno-2,3-benzodioxin-1(4H)-propanoic acid (endoperoxide, EP) was used for the generation of 1O2, and a sterically hindered secondary amine, 2,2,6,6-tetramethyl-4-piperidone (TEMPD) or 2,2,6,6-tetramethyl-4-piperidinol (TEMP-OH), was used as the 1O2 detection probe. These secondary amines were oxidized by 1O2 to form stable nitroxide radicals, which were detectable by ESR. TEMPD was found to be readily oxidized by air, causing large background signals in comparison with TEMP-OH. The ESR signal obtained by the irradiation of rose bengal with visible light in the presence of TEMP-OH consisted of two kinds of nitroxide radical overlapping. In contrast, only a single nitroxide signal was observed when TEMP-OH was reacted with 1O2 generated from EP. Therefore, the best combination should be EP as the 1O2 generator and TEMP-OH as the detection probe. When using this combination, we found that the concentrations of some organic solvents such as dimethyl sulfoxide and acetonitrile should be kept constant for reliable quantification, because the concentrations of organic solvents affect the ESR signal intensity.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxígeno Singlete/análisis , Oxidación-Reducción , Fármacos Fotosensibilizantes/química , Piperidonas/química , Propionatos/química , Rosa Bengala/química
3.
J Pers Med ; 12(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35629120

RESUMEN

Biodegradable nanomedicines are widely studied as candidates for the effective treatment of various cancerous diseases. Here, we present the design, synthesis and evaluation of biodegradable polymer-based nanomedicines tailored for tumor-associated stimuli-sensitive drug release and polymer system degradation. Diblock polymer systems were developed, which enabled the release of the carrier drug, pirarubicin, via a pH-sensitive spacer allowing for the restoration of the drug cytotoxicity solely in the tumor tissue. Moreover, the tailored design enables the matrix-metalloproteinases- or reduction-driven degradation of the polymer system into the polymer chains excretable from the body by glomerular filtration. Diblock nanomedicines take advantage of an enhanced EPR effect during the initial phase of nanomedicine pharmacokinetics and should be easily removed from the body after tumor microenvironment-associated biodegradation after fulfilling their role as a drug carrier. In parallel with the similar release profiles of diblock nanomedicine to linear polymer conjugates, these diblock polymer conjugates showed a comparable in vitro cytotoxicity, intracellular uptake, and intratumor penetration properties. More importantly, the diblock nanomedicines showed a remarkable in vivo anti-tumor efficacy, which was far more superior than conventional linear polymer conjugates. These findings suggested the advanced potential of diblock polymer conjugates for anticancer polymer therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA