Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Phys Chem Chem Phys ; 20(12): 7962-7967, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29383355

RESUMEN

We identify using ab initio calculations new types of three-dimensional carbon allotrope constructed by inserting acetylenic or diacetylenic bonds into a body-centered cubic C8 lattice. The resulting sp + sp3-hybridized cubane-yne and cubane-diyne structures consisting of C8 cubes can be characterized as a cubic crystalline modification of linear carbon chains, but energetically more favorable than the simplest linear carbyne chain and the cubic tetrahedral diamond and yne-diamond consisting of C4 tetrahedrons. Electronic band calculations indicate that these new carbon allotropes are semiconductors with an indirect band gap of 3.08 eV for cubane-yne and 2.53 eV for cubane-diyne. The present results establish new types of carbon phases consisting of C8 cubes and offer insights into their outstanding structural and electronic properties.

2.
Phys Chem Chem Phys ; 20(18): 13092, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29701215

RESUMEN

Correction for 'New carbon allotropes in sp + sp3 bonding networks consisting of C8 cubes' by Jian-Tao Wang et al., Phys. Chem. Chem. Phys., 2018, 20, 7962-7967.

3.
Phys Chem Chem Phys ; 18(16): 11073-80, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27045339

RESUMEN

Synthesis of pristine MXene sheets from MAX phase is one of the foremost challenges in getting a complete understanding of the properties of this new technologically important 2D-material. Efforts to exfoliate Nb4AlC3 MAX phase always lead to Nb4C3 MXene sheets, which are functionalized and have several Al atoms attached. Using the first-principles calculations, we perform an intensive study on the chemical transformation of MAX phase into MXene sheets by inserting HF, alkali atoms and LiF in Nb4AlC3 MAX phase. Calculated bond-dissociation energy (BDE) shows that the presence of HF in MAX phase always results in functionalized MXene, as the binding of H with MXene is quite strong while that with F is weak. Insertion of alkali atoms does not facilitate pristine MXene isolation due to the presence of chemical bonds of almost equal strength. In contrast, weak Li-MXene and strong Li-F bonding in Nb4AlC3 with LiF ensured strong anisotropy in BDE, which will result in the dissociation of the Li-MXene bond. Ab initio molecular dynamics calculations capture these features and show that at 500-650 K, the Li-MXene bond indeed breaks leaving a pristine MXene sheet behind. The approach and insights developed here for chemical exfoliation of layered materials bonded by chemical bonds instead of van der Waals can promote their experimental realization.

4.
Phys Rev Lett ; 110(16): 165503, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23679617

RESUMEN

Silicon and germanium transform from diamond to ß-tin structure under compression, but upon decompression they turn into metastable BC8 Si and ST12 Ge phases, respectively, instead of returning to the lowest-enthalpy diamond structure. Here we explore by first-principles calculations the atomistic mechanism underlying this intriguing phenomenon. We identify a body-centered tetragonal structure in I4(1)/a (C(4h)(6)) symmetry as a precursory state of the BC8 Si phase formed via a double cell bond-rotation mechanism with a low kinetic barrier. Kinetics also play a central role in selecting the decompression pathway in Ge via a trinary cell bond-twisting reconstruction process toward the ST12 Ge phase. In both cases, transformation back to energetically more favorable diamond structure is inhibited by the higher enthalpy barrier. These results explain experimental findings and highlight the kinetic origin of the divergent decompression pathways in Si and Ge.

5.
J Phys Condens Matter ; 36(13)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38035386

RESUMEN

Metastability of Aln/12Ga1-n/12N (n= 2-10: integer) with the 1-2 monolayer (ML) in-plane configuration towards thec[0001] direction has been demonstrated recently. To theoretically explain the existence of these metastable structures, relatively large calculation cells are needed. However, previous calculations were limited to the use of small calculation cell sizes to estimate the local potential depth (Δσ) of ordered Al1/2Ga1/2N models. In this work, we were able to evaluate large calculation cells based on the interaction energies between proximate Al atoms (δEAl-Al) in AlGaN alloys. To do this,δEAl-Alvalues were estimated by first-principles calculations (FPCs) using a (5a1× 5a2× 5c) cell. Next, a survey of the possible ordered configurations using various large calculation cell models was performed using the estimatedδEAl-Alvalues and the Monte-Carlo method. Then, various Δσvalues were estimated by FPCs and compared with the configurations previously reported by other research groups. We found that the ordered configuration obtained from the (4a1× 2a2× 1c) calculation cell (C42) has the lowest Δσof -9.3 meV/cation and exhibited an in-plane configuration at thec(0001) plane having (-Al-Al-Ga-Ga-) and (-Al-Ga-) sequence arrangements observed along them11-00planes. Hence, we found consistencies between the morphology obtained from experiment and the shape of the primitive cell based on our numerical calculations.

6.
J Phys Chem Lett ; 13(50): 11581-11594, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36480578

RESUMEN

Two-dimensional (2D) materials have attracted great attention mainly due to their unique physical properties and ability to fulfill the demands of future nanoscale devices. By performing high-throughput first-principles calculations combined with a semiempirical van der Waals dispersion correction, we have screened 73 direct- and 183 indirect-gap 2D nonmagnetic semiconductors from nearly 1000 monolayers according to the criteria for thermodynamic, mechanical, dynamic, and thermal stabilities and conductivity type. We present the calculated lattice constants, formation energy, Young's modulus, Poisson's ratio, shear modulus, anisotropic effective mass, band structure, band gap, ionization energy, electron affinity, and simulated scanning tunnel microscopy for each candidate meeting our criteria. The resulting 2D semiconductor database (2DSdb) can be accessed via the Web site https://materialsdb.cn/2dsdb/index.html. The 2DSdb provides an ideal platform for computational modeling and design of new 2D semiconductors and heterostructures in photocatalysis, nanoscale devices, and other applications. Further, a linear fitting model was proposed to evaluate band gap, ionization energy, and electron affinity of 2D semiconductors from the density functional theory (DFT) calculated data as initial input. This model can be as precise as hybrid DFT but with much lower computational cost.

7.
J Nanosci Nanotechnol ; 11(11): 10227-33, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22413369

RESUMEN

Ab initio molecular dynamics simulations are done to elucidate the electronic structure and properties of water/single-walled carbon nanotubes (SWCNTs) systems. The artificial neural network (ANN) approach and statistical methods are then used to model and analyze these properties. The ANN method substantially speeds up the ab initio electronic structure calculations and has superior accuracy in mimicking the results of such calculations. We aim to understand the effects of CNT chirality, temperature, and CNT flexibility on the water diffusion inside SWCNTs. In this regard, the CNT is fixed implies that the position of CNT is kept constant during the diffusion process. Statistical analysis of results shows that there is a nonmonotonic variation of diffusion length of water with respect to the CNT chirality. However, an increase in temperature and rigid CNTs accelerate the water diffusion.


Asunto(s)
Nanotubos de Carbono/química , Agua/química , Difusión , Modelos Estadísticos , Simulación de Dinámica Molecular , Redes Neurales de la Computación , Docilidad , Estereoisomerismo , Temperatura
8.
Chemistry ; 16(34): 10348-56, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20730747

RESUMEN

Two new, homochiral, porous metal-organic coordination polymers [Zn(2)(ndc){(R)-man}(dmf)]⋅3DMF and [Zn(2)(bpdc){(R)-man}(dmf)]⋅2DMF (ndc=2,6-naphthalenedicarboxylate; bpdc=4,4'-biphenyldicarboxylate; man=mandelate; dmf=N,N'-dimethylformamide) have been synthesized by heating Zn(II) nitrate, H(2)ndc or H(2)bpdc and chiral (R)-mandelic acid (H(2)man) in DMF. The colorless crystals were obtained and their structures were established by single-crystal X-ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal-organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH(3)SO(CH(2))(4)OH. The new homochiral porous metal-organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2-NaphSMe (2-C(10)H(7)SMe) and PhSCH(2)Ph) that could not be achieved by the smaller-pore [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo-preference is accounted for by the presence of coordinated inner-pore DMF molecule that forms a weak C-H...O bond between the DMF methyl group and the (S)-PhSOCH(3) sulfinyl group.


Asunto(s)
Dimetilformamida/química , Compuestos Organometálicos/química , Polímeros/química , Zinc/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Estereoisomerismo , Difracción de Rayos X
9.
Nanotechnology ; 21(11): 115602, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20173247

RESUMEN

We demonstrate an atomistic nucleation and growth mechanism for single-wall carbon nanotubes (SWNTs) on catalytic nanoparticle surfaces based on a core-shell model. We show by ab initio calculations that strain relief between the metal core and carbon shell plays a crucial role in facilitating the hexagonal tubular growth. The incipient nucleation begins with the formation of a hemispherical fullerene cap by a size-selected core-shell bonding process which is followed by a repeated phase-separating growth mode with increasing energetic stability via periodic pulsatile strain relief along the tubular growth pathway. These results provide an excellent account for experimental observations and shed new light on the origin and underlying dynamics of SWNT growth.

10.
Phys Chem Chem Phys ; 12(37): 11763-9, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20694223

RESUMEN

We present a systematic analysis of molecular level alignments and electron transport characteristics based on the non-equilibrium Green's function (NEGF) approach combined with density functional theory (DFT) for phenyl dithiol (PDT) derivatives with two different linkages, simple thiol (ST) and tripod-shaped adamantane trithiol (ATT). The substantial adamantane-metal bonds afford a rigid contact structure and well-defined conductance of a single-molecule junction irrespective of interfacial phenomena, which accordingly allows us to utilize the intrinsic nature of the molecule for designing molecular devices with prescribed transport characteristics. We suggest a feasible application of the ATT linkage embedded single-molecule junction to a molecular transistor based on the practical feature of the ATT linkage, which is the unsusceptible behavior of transmission under the applied bias voltage. The present result may serve as an important reference point for designing molecular devices with prescribed transport properties.

11.
J Phys Chem A ; 114(15): 5049-57, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20334429

RESUMEN

Using the first principles method, we study the growth behavior and electronic and magnetic properties of TiNi(n) (n = 1-12) clusters to clarify the effect of Ti modulation on the nickel nanostructures. Furthermore, chemisorption of H(2) was studied to understand the chemical reactivity of H(2) on the small Ni- and Ti-doped Ni clusters. The calculations are performed using the plane wave pseudopotential approach under the density functional theory and generalized gradient approximation for the exchange and correlation functional. The optimized geometries of TiNi(n-1) clusters indicate that the substitution of Ti brings a substantial structural reconstruction from 3D structure to a layer structure in which Ti atom is found to coordinate with Ni atoms to a maximum extent. This is accompanied by a significant enhancement in binding energies and reduction in chemical reactivity. Furthermore, the magnetic moments of the small Ti-doped Ni clusters are quenched because of the antiferromagnetic alignment of the Ti electrons. The lowest-energy structure of H(2) chemisorbed on Ni clusters shows that hydrogen prefers to adsorb on the edge site with two hydrogen atoms on these clusters in neighboring sites as the preferred arrangement. The incorporation of Ti atom improves the chemisorption energy of Ni clusters. Bader charge analysis indicates that with the formation of metal hydride, the H atoms withdraw charges from the metal centers, making them lose an electron, and carry a positive charge over them. Furthermore, Ti doping is found to enhance the chemical reactivity of Ni clusters.

12.
Small ; 5(15): 1769-75, 2009 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-19360721

RESUMEN

A systematic analysis of electron transport characteristics for 1D heterojunctions with two nitrogen-doped (N-doped) capped carbon nanotubes (CNTs) facing one another at different conformations is presented considering the chirality of CNTs (armchair(5,5) and zigzag(9,0)) and spatial arrangement of N-dopants. The results show that the modification of the molecular orbitals by the N-dopants generates a conducting channel in the designed CNT junctions, inducing a negative differential resistance (NDR) behavior, which is a characteristic feature of the Esaki-like diode, that is, tunneling diode. The NDR behavior significantly depends on the N-doping site and the facing conformations of the N-doped capped CNT junctions. Furthermore, a clear interpretation is presented for the NDR behavior by a rigid shift model of the HOMO- and LUMO-filtered energy levels in the left and right electrodes under the applied biases. These results give an insight into the design and implementation of various electronic logic functions based on CNTs for applications in the field of nanoelectronics.


Asunto(s)
Electrónica/instrumentación , Electrones , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Nitrógeno/química , Conformación Molecular , Termodinámica
13.
J Chem Phys ; 131(18): 184506, 2009 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19916611

RESUMEN

Molecular dynamics simulations were performed to evaluate the penetration of two different fluids (i.e., a Lennard-Jones fluid and a polymer) through a designed nanochannel. For both fluids, the length of permeation as a function of time was recorded for various wall-fluid interactions. A novel methodology, namely, the artificial neural network (ANN) approach was then employed for modeling and prediction of the length of imbibition as a function of influencing parameters (i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction). It was demonstrated that the designed ANN is capable of modeling and predicting the length of penetration with superior accuracy. Moreover, the importance of variables in the designed ANN, i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction, was demonstrated with the aid of the so-called connection weight approach, by which all parameters are simultaneously considered. It was revealed that the wall-fluid interaction plays a significant role in such transport phenomena, namely, fluid flow in nanochannels.

14.
J Chem Phys ; 131(21): 214505, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-19968349

RESUMEN

By using density functional theory, the hydrogen storage capacity of C(60)(OM)(12) (M=Li and Na) clusters has been studied. The atomic charge transfer process has been analyzed to explain the reason why H(2) molecules can be attracted. Through our calculation, we found that C(60)(OM)(12) (M=Li and Na) possesses an adequate hydrogen binding energy which is suitable for practical storage usage at ambient temperature. When these clusters reach their maximum H(2) uptake capacity, the mean hydrogen binding energy is 0.115 eV/H(2) for C(60)(OLi)(12)54H(2) and 0.122 eV/H(2) for C(60)(ONa)(12)54H(2) with the gravimetric hydrogen percentage of 9.78 and 8.33 wt %, respectively.

15.
J Chem Phys ; 130(12): 124911, 2009 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-19334893

RESUMEN

In this study we have investigated the interaction of phenylalanine (Phe), histidine (His), tyrosine (Tyr), and tryptophan (Tryp) molecules with graphene and single walled carbon nanotubes (CNTs) with an aim to understand the effect of curvature on the non-covalent interaction. The calculations are performed using density functional theory and the Moller-Plesset second-order perturbation theory (MP2) within linear combination of atomic orbitals-molecular orbital (LCAO-MO) approach. Using these methods, the equilibrium configurations of these complexes were found to be very similar, i.e., the aromatic rings of the amino acids prefer to orient in parallel with respect to the plane of the substrates, which bears the signature of weak pi-pi interactions. The binding strength follows the trend: His

Asunto(s)
Aminoácidos Aromáticos/química , Modelos Moleculares , Nanotubos de Carbono/química , Electrones , Conformación Molecular
16.
J Chem Phys ; 131(24): 244510, 2009 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-20059082

RESUMEN

In order to accurately estimate the thermodynamic properties of hydrogen clathrate hydrates, we developed a method based on the solid solution theory of van der Waals and Platteeuw. This model allows one to take into account the influence of guest molecules on the host lattice and guest-guest interactions--especially when more than one guest molecule occupies a cage. The free energies, equations of state, and chemical potentials of hydrogen and mixed propane-hydrogen clathrate hydrates of cubic structure II with different cage fillings have been estimated using this approach. Moreover, the proposed theory has been used for construction p-T phase diagrams of hydrogen hydrate and mixed hydrogen-propane hydrates in a wide range of pressures and temperatures. For the systems with well defined interactions the calculated curves of "guest gas-hydrate-ice I(h)" equilibrium agree with the available experimental data. We also believe that the present model allows one not only to calculate the hydrogen storage ability of known hydrogen hydrate but also predict this value for structures that have not yet been realized by experiment.

17.
J Chem Phys ; 131(11): 114507, 2009 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19778129

RESUMEN

The theory developed in our earlier papers is extended to predict dynamical and thermodynamic properties of clathrate structures by accounting for the possibility of multiple filling of cavities by guest molecules. The method is applied to the thermodynamic properties of argon and krypton hydrates, considering both structures I (sI) and II (sII), in which the small cages can be singly occupied and large cages of sII can be singly or doubly occupied. It was confirmed that the structure of the clathrate hydrate is determined by two main factors: intermolecular interaction between guest and host molecules and the configurational entropy. It is shown that for guests weakly interacting with water molecules, such as argon or krypton, the free energy of host lattices without the contribution of entropy is the main structure-determining factor for clathrate hydrates, and it is a cause of hydrate sII formation at low pressure with these guests. Explicit account of the entropy contribution in the Gibbs free energy allows one to determine the stability of hydrate phases and to estimate the line of structural transition from sII to sI in P-T plane. The structural transition between sII and sI in argon and krypton hydrates at high pressure is shown to be the consequence of increasing intermolecular interaction and the degree of occupancy of the large cavities.

18.
Int J Mol Sci ; 10(4): 1601-1608, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19468328

RESUMEN

Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen.


Asunto(s)
Hidrógeno/química , Litio/química , Metales/química , Compuestos Orgánicos/química , Adsorción , Cobalto/química , Cobre/química , Hierro/química , Níquel/química , Zinc/química
19.
J Phys Chem Lett ; 10(4): 780-785, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30730142

RESUMEN

Functionalized MXene has emerged a promising class of two-dimensional materials having more than tens of thousands of compounds, whose uses may range from electronics to energy applications. Other than the band gap, these properties rely on the accurate position of the band edges. Hence, to synthesize MXenes for various applications, a prior knowledge of the accurate position of their band edges at an absolute scale is essential; computing these with conventional methods would take years for all the MXenes. Here, we develop a machine learning model for positioning the band edges with GW level of accuracy having a minimum root-mean-squared error of 0.12 eV. An intuitive model is proposed based on the combination of Perdew-Burke-Ernzerhof band edge and vacuum potential having a correlation of 0.93 with GW band edges. These models can be utilized to identify MXenes for a desired application in an accelerated manner.

20.
Small ; 4(7): 962-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18574801

RESUMEN

A systematic analysis of electron-transport characteristics for monomer, dimer, and tetramer multiporphyrinic systems is presented, to provide a thorough understanding of the structural dependence of electron transport related to the aromatic nature of the contact structure. Theoretical investigation shows that the electron-transport characteristics can be controlled by manipulating the pi-conjugated framework in the multiporphyrinic systems through the arrangement of the inner hydrogen atoms. The designed pi-conjugated framework assigns the distinct aromaticity on the contact structure, and the large aromatic nature of the contact structure increases conductivity. The feature emerging from this study is that the aromaticity and pi-conjugated framework are important factors that control the electron-transport characteristics in molecular-scale electronic devices, such as single-molecule switches.


Asunto(s)
Nanotecnología/métodos , Porfirinas/química , Computadores Moleculares , Dimerización , Electroquímica/instrumentación , Transporte de Electrón , Electrónica , Electrones , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Nanoestructuras , Nanotecnología/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA