Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D239-D244, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015436

RESUMEN

The MODOMICS database was updated with recent data and now includes new data types related to RNA modifications. Changes to the database include an expanded modification catalog, encompassing both natural and synthetic residues identified in RNA structures. This addition aids in representing RNA sequences from the RCSB PDB database more effectively. To manage the increased number of modifications, adjustments to the nomenclature system were made. Updates in the RNA sequences section include the addition of new sequences and the reintroduction of sequence alignments for tRNAs and rRNAs. The protein section was updated and connected to structures from the RCSB PDB database and predictions by AlphaFold. MODOMICS now includes a data annotation system, with 'Evidence' and 'Estimated Reliability' features, offering clarity on data support and accuracy. This system is open to all MODOMICS entries, enhancing the accuracy of RNA modification data representation. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN , Bases de Datos de Proteínas , ARN/química , ARN/genética , Internet , Análisis de Secuencia de ARN , Interfaz Usuario-Computador
2.
Nucleic Acids Res ; 52(W1): W368-W373, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738621

RESUMEN

Research on ribonucleic acid (RNA) structures and functions benefits from easy-to-use tools for computational prediction and analyses of RNA three-dimensional (3D) structure. The SimRNAweb server version 2.0 offers an enhanced, user-friendly platform for RNA 3D structure prediction and analysis of RNA folding trajectories based on the SimRNA method. SimRNA employs a coarse-grained model, Monte Carlo sampling and statistical potentials to explore RNA conformational space, optionally guided by spatial restraints. Recognized for its accuracy in RNA 3D structure prediction in RNA-Puzzles and CASP competitions, SimRNA is particularly useful for incorporating restraints based on experimental data. The new server version introduces performance optimizations and extends user control over simulations and the processing of results. It allows the application of various hard and soft restraints, accommodating alternative structures involving canonical and noncanonical base pairs and unpaired residues, while also integrating data from chemical probing methods. Enhanced features include an improved analysis of folding trajectories, offering advanced clustering options and multiple analyses of the generated trajectories. These updates provide comprehensive tools for detailed RNA structure analysis. SimRNAweb v2.0 significantly broadens the scope of RNA modeling, emphasizing flexibility and user-defined parameter control. The web server is available at https://genesilico.pl/SimRNAweb.


Asunto(s)
Internet , Modelos Moleculares , Conformación de Ácido Nucleico , Pliegue del ARN , ARN , Programas Informáticos , ARN/química , Método de Montecarlo
3.
Nucleic Acids Res ; 51(D1): D226-D231, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36280237

RESUMEN

The Nucleic Acid Circular Dichroism Database (NACDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data about nucleic acids, and the associated experimental metadata, structural models, and links to literature. NACDDB covers CD data for various nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids, and various nucleic acid derivatives. The entries are linked to primary sequence and experimental structural data, as well as to the literature. Additionally, for all entries, 3D structure models are provided. All entries undergo expert validation and curation procedures to ensure completeness, consistency, and quality of the data included. The NACDDB is open for submission of the CD data for nucleic acids. NACDDB is available at: https://genesilico.pl/nacddb/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Ácidos Nucleicos , Dicroismo Circular , Sincrotrones , Ácidos Nucleicos/química
4.
Proteins ; 91(12): 1800-1810, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37622458

RESUMEN

Ribonucleic acid (RNA) molecules serve as master regulators of cells by encoding their biological function in the ribonucleotide sequence, particularly their ability to interact with other molecules. To understand how RNA molecules perform their biological tasks and to design new sequences with specific functions, it is of great benefit to be able to computationally predict how RNA folds and interacts in the cellular environment. Our workflow for computational modeling of the 3D structures of RNA and its interactions with other molecules uses a set of methods developed in our laboratory, including MeSSPredRNA for predicting canonical and non-canonical base pairs, PARNASSUS for detecting remote homology based on comparisons of sequences and secondary structures, ModeRNA for comparative modeling, the SimRNA family of programs for modeling RNA 3D structure and its complexes with other molecules, and QRNAS for model refinement. In this study, we present the results of testing this workflow in predicting RNA 3D structures in the CASP15 experiment. The overall high score of the computational models predicted by our group demonstrates the robustness of our workflow and its individual components in terms of predicting RNA 3D structures of acceptable quality that are close to the target structures. However, the variance in prediction quality is still quite high, and the results are still too far from the level of protein 3D structure predictions. This exercise led us to consider several improvements, especially to better predict and enforce stacking interactions and non-canonical base pairs.


Asunto(s)
ARN , ARN/química , Conformación de Ácido Nucleico , Modelos Moleculares , Emparejamiento Base , Simulación por Computador
5.
Protein Sci ; 32(1): e4503, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369832

RESUMEN

The biologically relevant structures of proteins and nucleic acids and their complexes are dynamic. They include a combination of regions ranging from rigid structural segments to structural switches to regions that are almost always disordered, which interact with each other in various ways. Comparing conformational changes and variation in contacts between different conformational states is essential to understand the biological functions of proteins, nucleic acids, and their complexes. Here, we describe a new computational tool, 1D2DSimScore, for comparing contacts and contact interfaces in all kinds of macromolecules and macromolecular complexes, including proteins, nucleic acids, and other molecules. 1D2DSimScore can be used to compare structural features of macromolecular models between alternative structures obtained in a particular experiment or to score various predictions against a defined "ideal" reference structure. Comparisons at the level of contacts are particularly useful for flexible molecules, for which comparisons in 3D that require rigid-body superpositions are difficult, and in biological systems where the formation of specific inter-residue contacts is more relevant for the biological function than the maintenance of a specific global 3D structure. Similarity/dissimilarity scores calculated by 1D2DSimScore can be used to complement scores describing 3D structural similarity measures calculated by the existing tools.


Asunto(s)
Ácidos Nucleicos , Proteínas , Modelos Moleculares , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA