Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Cell Sci ; 132(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31331967

RESUMEN

Dysfunction of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) leads to ischaemia, the central pathology of cardiovascular disease. Stem cell technology will revolutionise regenerative medicine, but a need remains to understand key mechanisms of vascular differentiation. RNA-binding proteins have emerged as novel post-transcriptional regulators of alternative splicing and we have previously shown that the RNA-binding protein Quaking (QKI) plays roles in EC differentiation. In this study, we decipher the role of the alternative splicing isoform Quaking 6 (QKI-6) to induce VSMC differentiation from induced pluripotent stem cells (iPSCs). PDGF-BB stimulation induced QKI-6, which bound to HDAC7 intron 1 via the QKI-binding motif, promoting HDAC7 splicing and iPS-VSMC differentiation. Overexpression of QKI-6 transcriptionally activated SM22 (also known as TAGLN), while QKI-6 knockdown diminished differentiation capability. VSMCs overexpressing QKI-6 demonstrated greater contractile ability, and upon combination with iPS-ECs-overexpressing the alternative splicing isoform Quaking 5 (QKI-5), exhibited higher angiogenic potential in vivo than control cells alone. This study demonstrates that QKI-6 is critical for modulation of HDAC7 splicing, regulating phenotypically and functionally robust iPS-VSMCs. These findings also highlight that the QKI isoforms hold key roles in alternative splicing, giving rise to cells which can be used in vascular therapy or for disease modelling.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Empalme Alternativo , Células Endoteliales/metabolismo , Modelos Cardiovasculares , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Células Endoteliales/patología , Células HEK293 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/patología , Isquemia/terapia , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas de Unión al ARN/genética
2.
Cells ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759443

RESUMEN

Ischaemic cardiovascular disease is associated with tissue hypoxia as a significant determinant of angiogenic dysfunction and adverse remodelling. While cord blood-derived endothelial colony-forming cells (CB-ECFCs) hold clear therapeutic potential due to their enhanced angiogenic and proliferative capacity, their impaired functionality within the disease microenvironment represents a major barrier to clinical translation. The aim of this study was to define the specific contribution of NOX4 NADPH oxidase, which we previously reported as a key CB-ECFC regulator, to hypoxia-induced dysfunction and its potential as a therapeutic target. CB-ECFCs exposed to experimental hypoxia demonstrated downregulation of NOX4-mediated reactive oxygen species (ROS) signalling linked with a reduced tube formation, which was partially restored by NOX4 plasmid overexpression. siRNA knockdown of placenta-specific 8 (PLAC8), identified by microarray analysis as an upstream regulator of NOX4 in hypoxic versus normoxic CB-ECFCs, enhanced tube formation, NOX4 expression and hydrogen peroxide generation, and induced several key transcription factors associated with downstream Nrf2 signalling. Taken together, these findings indicated that activation of the PLAC8-NOX4 signalling axis improved CB-ECFC angiogenic functions in experimental hypoxia, highlighting this pathway as a potential target for protecting therapeutic cells against the ischaemic cardiovascular disease microenvironment.

3.
Nat Commun ; 11(1): 3812, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732889

RESUMEN

Vascular endothelial cell (EC) dysfunction plays a key role in diabetic complications. This study discovers significant upregulation of Quaking-7 (QKI-7) in iPS cell-derived ECs when exposed to hyperglycemia, and in human iPS-ECs from diabetic patients. QKI-7 is also highly expressed in human coronary arterial ECs from diabetic donors, and on blood vessels from diabetic critical limb ischemia patients undergoing a lower-limb amputation. QKI-7 expression is tightly controlled by RNA splicing factors CUG-BP and hnRNPM through direct binding. QKI-7 upregulation is correlated with disrupted cell barrier, compromised angiogenesis and enhanced monocyte adhesion. RNA immunoprecipitation (RIP) and mRNA-decay assays reveal that QKI-7 binds and promotes mRNA degradation of downstream targets CD144, Neuroligin 1 (NLGN1), and TNF-α-stimulated gene/protein 6 (TSG-6). When hindlimb ischemia is induced in diabetic mice and QKI-7 is knocked-down in vivo in ECs, reperfusion and blood flow recovery are markedly promoted. Manipulation of QKI-7 represents a promising strategy for the treatment of diabetic vascular complications.


Asunto(s)
Diabetes Mellitus Experimental/patología , Células Endoteliales/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Enfermedades Vasculares/patología , Animales , Antígenos CD/genética , Aterosclerosis/patología , Cadherinas/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Regulación de la Expresión Génica/genética , Humanos , Hiperglucemia/patología , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética
5.
Cardiovasc Res ; 116(2): 393-405, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30937452

RESUMEN

AIMS: Cord blood-derived endothelial colony-forming cells (CB-ECFCs) are a defined progenitor population with established roles in vascular homeostasis and angiogenesis, which possess low immunogenicity and high potential for allogeneic therapy and are highly sensitive to regulation by reactive oxygen species (ROS). The aim of this study was to define the precise role of the major ROS-producing enzyme, NOX4 NADPH oxidase, in CB-ECFC vasoreparative function. METHODS AND RESULTS: In vitro CB-ECFC migration (scratch-wound assay) and tubulogenesis (tube length, branch number) was enhanced by phorbol 12-myristate 13-acetate (PMA)-induced superoxide in a NOX-dependent manner. CB-ECFCs highly-expressed NOX4, which was further induced by PMA, whilst NOX4 siRNA and plasmid overexpression reduced and potentiated in vitro function, respectively. Increased ROS generation in NOX4-overexpressing CB-ECFCs (DCF fluorescence, flow cytometry) was specifically reduced by superoxide dismutase, highlighting induction of ROS-specific signalling. Laser Doppler imaging of mouse ischaemic hindlimbs at 7 days indicated that NOX4-knockdown CB-ECFCs inhibited blood flow recovery, which was enhanced by NOX4-overexpressing CB-ECFCs. Tissue analysis at 14 days revealed consistent alterations in vascular density (lectin expression) and eNOS protein despite clearance of injected CB-ECFCs, suggesting NOX4-mediated modulation of host tissue. Indeed, proteome array analysis indicated that NOX4-knockdown CB-ECFCs largely suppressed tissue angiogenesis, whilst NOX4-overexpressing CB-ECFCs up-regulated a number of pro-angiogenic factors specifically-linked with eNOS signalling, in parallel with equivalent modulation of NOX-dependent ROS generation, suggesting that CB-ECFC NOX4 signalling may promote host vascular repair. CONCLUSION: Taken together, these findings indicate a key role for NOX4 in CB-ECFCs, thereby highlighting its potential as a target for enhancing their reparative function through therapeutic priming to support creation of a pro-reparative microenvironment and effective post-ischaemic revascularization.


Asunto(s)
Células Progenitoras Endoteliales/trasplante , Isquemia/cirugía , Músculo Esquelético/irrigación sanguínea , NADPH Oxidasa 4/metabolismo , Neovascularización Fisiológica , Animales , Movimiento Celular , Células Cultivadas , Microambiente Celular , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/enzimología , Sangre Fetal/citología , Miembro Posterior , Humanos , Isquemia/enzimología , Isquemia/genética , Isquemia/fisiopatología , Ratones Endogámicos NOD , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA