Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(21): 6035-40, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162343

RESUMEN

The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K(+) (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal "brush border" disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.


Asunto(s)
Disacáridos/farmacología , Regulación Enzimológica de la Expresión Génica/fisiología , Papilas Gustativas/enzimología , Gusto/fisiología , alfa-Glucosidasas/biosíntesis , Animales , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , alfa-Glucosidasas/genética
2.
J Virol ; 90(23): 10693-10700, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27654293

RESUMEN

Influenza virus neuraminidase (NA) drug resistance is one of the challenges to preparedness against epidemic and pandemic influenza virus infections. NA N1- and N2-containing influenza viruses are the primary cause of seasonal epidemics and past pandemics. The structural and functional basis underlying drug resistance of the influenza virus N1 NA is well characterized. Yet drug resistance of the N2 strain is not well understood. Here, we confirm that replacement of N2 E119 or I222 results in multidrug resistance, and when the replacements occur together, the sensitivity to NA inhibitors (NAI) is reduced severely. Using crystallographic studies, we showed that E119 replacement results in a loss of hydrogen bonding to oseltamivir and zanamivir, whereas I222 replacement results in a change in the hydrophobic environment that is critical for oseltamivir binding. Moreover, we found that MS-257, a zanamivir-oseltamivir hybrid inhibitor, is less susceptible to drug resistance. The binding mode of MS-257 shows that increased hydrogen bonding interactions between the inhibitor and NA active site anchor the inhibitor within the active site and allow adjustments in response to active-site modifications. Such stability is likely responsible for the observed reduced susceptibility to drug resistance. MS-257 serves as a next-generation anti-influenza virus drug candidate and serves also as a scaffold for further design of NAIs. IMPORTANCE: Oseltamivir and zanamivir are the two major antiviral drugs available for the treatment of influenza virus infections. However, multidrug-resistant viruses have emerged in clinical cases, which pose a challenge for the development of new drugs. N1 and N2 subtypes exist in the viruses which cause seasonal epidemics and past pandemics. Although N1 drug resistance is well characterized, the molecular mechanisms underlying N2 drug resistance are unknown. A previous report showed that an N2 E119V/I222L dual mutant conferred drug resistance to seasonal influenza virus. Here, we confirm that these substitutions result in multidrug resistance and dramatically reduced sensitivity to NAI. We further elucidate the molecular mechanism underlying N2 drug resistance by solving crystal structures of the N2 E119V and I222L mutants and the dual mutant. Most importantly, we found that a novel oseltamivir-zanamivir hybrid inhibitor, MS-257, remains more effective against drug-resistant N2 and is a promising candidate as a next-generation anti-influenza virus drug.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Mutación , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Oseltamivir/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Zanamivir/farmacología , Sustitución de Aminoácidos , Farmacorresistencia Viral Múltiple/genética , Inhibidores Enzimáticos/farmacología , Humanos , Virus de la Influenza A/genética , Modelos Moleculares , Neuraminidasa/química , Proteínas Virales/química
3.
Nature ; 474(7351): 403-6, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21572435

RESUMEN

The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Ratones , Proteínas Nucleares/deficiencia , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
Chembiochem ; 17(23): 2264-2273, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27653508

RESUMEN

UDP-galactopyranose mutase (UGM), a key enzyme in the biosynthesis of mycobacterial cell walls, is a potential target for the treatment of tuberculosis. In this work, we investigate binding models of a non-substrate-like inhibitor, MS-208, with M. tuberculosis UGM. Initial saturation transfer difference (STD) NMR experiments indicated a lack of direct competition between MS-208 and the enzyme substrate, and subsequent kinetic assays showed mixed inhibition. We thus hypothesized that MS-208 binds at an allosteric binding site (A-site) instead of the enzyme active site (S-site). A candidate A-site was identified in a subsequent computational study, and the overall hypothesis was supported by ensuing mutagenesis studies of the A-site. Further molecular dynamics studies led us to propose that MS-208 inhibition occurs by preventing complete closure of an active site mobile loop that is necessary for productive substrate binding. The results suggest the presence of an A-site with potential druggability, opening up new opportunities for the development of novel drug candidates against tuberculosis.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Transferasas Intramoleculares/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Pirazoles/farmacología , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Transferasas Intramoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Pirazoles/química , Relación Estructura-Actividad
5.
Nature ; 465(7297): 473-7, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20505728

RESUMEN

Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60x coverage) and adjacent normal tissue (46x). Comparing the two genomes, we identify a wide variety of somatic variations, including >50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Genoma Humano/genética , Neoplasias Pulmonares/genética , Mutación Puntual/genética , Análisis Mutacional de ADN , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Proto-Oncogenes Mas , Selección Genética/genética
6.
Br J Cancer ; 113(8): 1225-33, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26379078

RESUMEN

BACKGROUND: PTEN gene loss occurs frequently in castration-resistant prostate cancer (CRPC) and may drive progression through activation of the PI3K/AKT pathway. Here, we developed a novel CTC-based assay to determine PTEN status and examined the correlation between PTEN status in CTCs and matched tumour tissue samples. METHODS: PTEN gene status in CTCs was evaluated on an enrichment-free platform (Epic Sciences) by fluorescence in situ hybridisation (FISH). PTEN status in archival and fresh tumour tissue was evaluated by FISH and immunohistochemistry. RESULTS: Peripheral blood was collected from 76 patients. Matched archival and fresh cancer tissue was available for 48 patients. PTEN gene status detected in CTCs was concordant with PTEN status in matched fresh tissues and archival tissue in 32 of 38 patients (84%) and 24 of 39 patients (62%), respectively. CTC counts were prognostic (continuous, P=0.001). PTEN loss in CTCs associated with worse survival in univariate analysis (HR 2.05; 95% CI 1.17-3.62; P=0.01) and with high lactate dehydrogenase (LDH) in metastatic CRPC patients. CONCLUSIONS: Our results illustrate the potential use of CTCs as a non-invasive, real-time liquid biopsy to determine PTEN gene status. The prognostic and predictive value of PTEN in CTCs warrants investigation in CRPC clinical trials of PI3K/AKT-targeted therapies.


Asunto(s)
Células Neoplásicas Circulantes/patología , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Anciano , Progresión de la Enfermedad , Humanos , Inmunohistoquímica/métodos , Hibridación Fluorescente in Situ/métodos , L-Lactato Deshidrogenasa/genética , Masculino , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
7.
Acc Chem Res ; 47(1): 211-25, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23964564

RESUMEN

In humans, four different enzymes mediate the digestion of ingested carbohydrates. First salivary and pancreatic α-amylases, the two endoacting retaining glucosidases, break down the complex starch molecules into smaller linear maltose-oligomers (LM) and branched α-limit dextrins (αLDx). Then two retaining exoglucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), convert those molecules into glucose in the small intestine. The small intestinal brush-border epithelial cells anchor MGAM and SI, and each contains a catalytic N- and C-terminal subunit, ntMGAM, ctMGAM, ntSI, and ctSI, respectively. All four catalytic domains have, to varying extents, α-1,4-exohydrolytic glucosidase activity and belong to the glycoside hydrolase family 31 (GH31). ntSI and ctSI show additional activity toward α-1,6 (isomaltose substrates) and α-1,2 (sucrose) glycosidic linkages, respectively. Because they mediate the final steps of starch digestion, both MGAM and SI are important target enzymes for the treatment of type-2 diabetes. Because of their potent inhibitory activities against the mammalian intestinal α-glucosidases, sulfonium-ion glucosidase inhibitors isolated from the antidiabetic herbal extracts of various Salacia species have received considerable attention recently. Thus far, researchers have isolated eight sulfonium-ion glucosidase inhibitors from Salacia species: salaprinol, salacinol, ponkoranol, kotalanol, and four of their corresponding de-O-sulfonated compounds, the structures of which comprise a 1,4-anhydro-4-thio-d-arabinitol and a polyhydroxylated acyclic side chain. Some of these compounds more strongly inhibit human intestinal α-glucosidases than the currently available antidiabetic drugs, acarbose and miglitol, and could serve as lead candidates in the treatment of type-2 diabetes. In this Account, we summarize progress in the field since 2010 with this class of inhibitors, with particular focus on their selective inhibitory activities against the intestinal glucosidases. Through structure-activity relationship (SAR) studies, we have modified the natural compounds to derive more potent, nanomolar inhibitors of human MGAM and SI. This structural optimization also yielded the most potent inhibitors known to date for each subunit. Furthermore, we observed that some of our synthetic inhibitors selectively blocked the activity of some mucosal α-glucosidases. Those results led to our current working hypothesis that selective inhibitors can dampen the action of a fast digesting subunit or subunits which places the burden of digestion on slower digesting subunits. That strategy can control the rate of starch digestion and glucose release to the body. Decreasing the initial glucose spike after a carbohydrate-rich meal and extending postprandial blood glucose delivery to the body can be desirable for diabetics and patients with other metabolic syndrome-associated diseases.


Asunto(s)
Productos Biológicos/farmacología , Inhibidores Enzimáticos/farmacología , Glucosidasas/antagonistas & inhibidores , Hipoglucemiantes/farmacología , Compuestos de Azufre/farmacología , Animales , Productos Biológicos/química , Inhibidores Enzimáticos/química , Humanos , Hipoglucemiantes/química , Relación Estructura-Actividad , Compuestos de Azufre/química
8.
Angew Chem Int Ed Engl ; 53(4): 1076-80, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24339250

RESUMEN

We have previously reported a potent neuraminidase inhibitor that comprises a carbocyclic analogue of zanamivir in which the hydrophilic glycerol side chain is replaced by the hydrophobic 3-pentyloxy group of oseltamivir. This hybrid inhibitor showed excellent inhibitory properties in the neuraminidase inhibition assay (Ki =0.46 nM; Ki (zanamivir) =0.16 nM) and in the viral replication inhibition assay in cell culture at 10(-8) M. As part of this lead optimization, we now report a novel spirolactam that shows comparable inhibitory activity in the cell culture assay to that of our lead compound at 10(-7) M. The compound was discovered serendipitously during the attempted synthesis of the isothiourea derivative of the original candidate. The X-ray crystal structure of the spirolactam in complex with the N8 subtype neuraminidase offers insight into the mode of inhibition.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Lactamas/farmacología , Neuraminidasa/antagonistas & inhibidores , Compuestos de Espiro/farmacología , Proteínas Virales/antagonistas & inhibidores , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Lactamas/síntesis química , Lactamas/química , Modelos Moleculares , Conformación Molecular , Neuraminidasa/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad , Proteínas Virales/metabolismo
9.
J Biol Chem ; 285(23): 17763-70, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20356844

RESUMEN

Human maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) are small intestinal enzymes that work concurrently to hydrolyze the mixture of linear alpha-1,4- and branched alpha-1,6-oligosaccharide substrates that typically make up terminal starch digestion products. MGAM and SI are each composed of duplicated catalytic domains, N- and C-terminal, which display overlapping substrate specificities. The N-terminal catalytic domain of human MGAM (ntMGAM) has a preference for short linear alpha-1,4-oligosaccharides, whereas N-terminal SI (ntSI) has a broader specificity for both alpha-1,4- and alpha-1,6-oligosaccharides. Here we present the crystal structure of the human ntSI, in apo form to 3.2 A and in complex with the inhibitor kotalanol to 2.15 A resolution. Structural comparison with the previously solved structure of ntMGAM reveals key active site differences in ntSI, including a narrow hydrophobic +1 subsite, which may account for its additional substrate specificity for alpha-1,6 substrates.


Asunto(s)
Oligo-1,6-Glucosidasa/química , Sacarasa/química , alfa-Glucosidasas/química , Animales , Carbohidratos/química , Cristalografía por Rayos X/métodos , Diabetes Mellitus/metabolismo , Drosophila/metabolismo , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Polisacáridos/química , Estructura Terciaria de Proteína , Especificidad por Sustrato
10.
Bioorg Med Chem ; 19(9): 2817-22, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21489803

RESUMEN

The viral neuraminidase enzyme is an established target for anti-influenza pharmaceuticals. However, viral neuraminidase inhibitors could have off-target effects due to interactions with native human neuraminidase enzymes. We report the activity of a series of known inhibitors of the influenza group-1 neuraminidase enzyme (N1 subtype) against recombinant forms of the human neuraminidase enzymes NEU3 and NEU4. These inhibitors were designed to take advantage of an additional enzyme pocket (known as the 150-cavity) near the catalytic site of certain viral neuraminidase subtypes (N1, N4 and N8). We find that these modified derivatives have minimal activity against the human enzymes, NEU3 and NEU4. Two compounds show moderate activity against NEU3, possibly due to alternative binding modes available to these structures. Our results reinforce that recognition of the glycerol side-chain is distinct between the viral and human NEU enzymes, and provide experimental support for improving the selectivity of viral neuraminidase inhibitors by exploiting the 150-cavity found in certain subtypes of viral neuraminidases.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/química , Proteínas Virales/antagonistas & inhibidores , Antivirales/síntesis química , Antivirales/farmacología , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Virus de la Influenza A/enzimología , Neuraminidasa/metabolismo , Oseltamivir/síntesis química , Oseltamivir/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad , Proteínas Virales/metabolismo
11.
Bioorg Med Chem ; 19(13): 3929-34, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21669536

RESUMEN

Inhibition of intestinal α-glucosidases and pancreatic α-amylases is an approach to controlling blood glucose and serum insulin levels in individuals with Type II diabetes. The two human intestinal glucosidases are maltase-glucoamylase and sucrase-isomaltase. Each incorporates two family 31 glycoside hydrolases responsible for the final step of starch hydrolysis. Here we compare the inhibition profiles of the individual N- and C-terminal catalytic subunits of both glucosidases by clinical glucosidase inhibitors, acarbose and miglitol, and newly discovered glucosidase inhibitors from an Ayurvedic remedy used for the treatment of Type II diabetes. We show that features of the compounds introduce selectivity towards the subunits. Together with structural data, the results enhance the understanding of the role of each catalytic subunit in starch digestion, helping to guide the development of new compounds with subunit specific antidiabetic activity. The results may also have relevance to other metabolic diseases such as obesity and cardiovascular disease.


Asunto(s)
Almidón/metabolismo , Complejo Sacarasa-Isomaltasa/metabolismo , alfa-Glucosidasas/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacología , Acarbosa/química , Acarbosa/farmacología , Dominio Catalítico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores de Glicósido Hidrolasas , Cinética , Monosacáridos/química , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Complejo Sacarasa-Isomaltasa/antagonistas & inhibidores , Alcoholes del Azúcar/química , Alcoholes del Azúcar/farmacología , Sulfatos/química , Sulfatos/farmacología
12.
J Med Chem ; 64(20): 14968-14982, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34661404

RESUMEN

Prostate cancer (PCa) patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer (CRPC). Targeting the androgen receptor (AR) Binding Function-3 (BF3) site offers a promising option to treat CRPC. However, BF3 inhibitors have been limited by poor potency or inadequate metabolic stability. Through extensive medicinal chemistry, molecular modeling, and biochemistry, we identified 2-(5,6,7-trifluoro-1H-Indol-3-yl)-quinoline-5-carboxamide (VPC-13789), a potent AR BF3 antagonist with markedly improved pharmacokinetic properties. We demonstrate that VPC-13789 suppresses AR-mediated transcription, chromatin binding, and recruitment of coregulatory proteins. This novel AR antagonist selectively reduces the growth of both androgen-dependent and enzalutamide-resistant PCa cell lines. Having demonstrated in vitro efficacy, we developed an orally bioavailable prodrug that reduced PSA production and tumor volume in animal models of CRPC with no observed toxicity. VPC-13789 is a potent, selective, and orally bioavailable antiandrogen with a distinct mode of action that has a potential as novel CRPC therapeutics.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Antineoplásicos/farmacología , Desarrollo de Medicamentos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Quinolinas/farmacología , Receptores Androgénicos/metabolismo , Administración Oral , Antagonistas de Andrógenos/administración & dosificación , Antagonistas de Andrógenos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Disponibilidad Biológica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Modelos Moleculares , Estructura Molecular , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Quinolinas/administración & dosificación , Quinolinas/química , Relación Estructura-Actividad
13.
Biochemistry ; 49(3): 443-51, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20039683

RESUMEN

An approach to controlling blood glucose levels in individuals with type 2 diabetes is to target alpha-amylases and intestinal glucosidases using alpha-glucosidase inhibitors acarbose and miglitol. One of the intestinal glucosidases targeted is the N-terminal catalytic domain of maltase-glucoamylase (ntMGAM), one of the four intestinal glycoside hydrolase 31 enzyme activities responsible for the hydrolysis of terminal starch products into glucose. Here we present the X-ray crystallographic studies of ntMGAM in complex with a new class of alpha-glucosidase inhibitors derived from natural extracts of Salacia reticulata, a plant used traditionally in Ayuverdic medicine for the treatment of type 2 diabetes. Included in these extracts are the active compounds salacinol, kotalanol, and de-O-sulfonated kotalanol. This study reveals that de-O-sulfonated kotalanol is the most potent ntMGAM inhibitor reported to date (K(i) = 0.03 microM), some 2000-fold better than the compounds currently used in the clinic, and highlights the potential of the salacinol class of inhibitors as future drug candidates.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Inhibidores Enzimáticos/química , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes/química , Salacia/química , alfa-Glucosidasas/química , Acarbosa/química , Sitios de Unión , Cristalografía por Rayos X , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Hipoglucemiantes/farmacología , Cinética , Medicina Ayurvédica , Extractos Vegetales/química , Relación Estructura-Actividad , Alcoholes del Azúcar/química , Sulfatos/química , alfa-Glucosidasas/metabolismo
14.
Nat Prod Rep ; 27(4): 481-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20336233

RESUMEN

This Highlight describes the detailed approach used to determine the absolute stereochemistry of the stereogenic centers in the acyclic side chain of kotalanol, a naturally occurring glucosidase inhibitor isolated from the plant Salacia reticulata. The plant extract itself is used in Ayurvedic medicine for the treatment of Type 2 diabetes. We highlight the syntheses of proposed candidates based on structure-activity relationships, the total synthesis of kotalanol, and crystallographic studies of kotalanol and its de-O-sulfonated derivative complexed with recombinant human maltase glucoamylase (MGA), a critical intestinal glucosidase involved in the breakdown of glucose oligomers into glucose.


Asunto(s)
Productos Biológicos , Glucosidasas/antagonistas & inhibidores , Inhibidores de Glicósido Hidrolasas , Monosacáridos , Salacia/química , Sulfatos , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Glucosidasas/metabolismo , Humanos , Intestinos/enzimología , Medicina Ayurvédica , Estructura Molecular , Monosacáridos/química , Monosacáridos/aislamiento & purificación , Monosacáridos/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Sulfatos/química , Sulfatos/aislamiento & purificación , Sulfatos/farmacología , alfa-Glucosidasas/metabolismo
15.
Anal Chem ; 82(12): 5323-30, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20491445

RESUMEN

A simple and reproducible capillary-zone electrophoresis (CZE) method was developed for the separation and quantitation of sulfonium-ion-containing compounds isolated from plants of the Salacia genus which are traditionally used in Ayurvedic medicine for the treatment of type-2 diabetes. The method sufficiently resolved four different compounds with confirmed glucosidase inhibitory activity, namely, salacinol, ponkoranol, kotalanol and de-O-sulfonated kotalanol. Separation could be achieved in less than 9 min, and calibration curves showed good linearity. Detection limits were determined to be in the low mug/mL range. This method was used to demonstrate that de-O-sulfonated kotalanol isolated from natural sources has identical ionic mobility to a synthetic standard. Furthermore, new extraction conditions were developed by which the zwitterionic compounds (salacinol, ponkoranol, and kotalanol) could be separated from de-O-sulfonated kotalanol in a single solid-phase extraction (SPE) procedure. The extraction gave reproducibly high recoveries and was used to process four commercial Salacia extracts for CZE analysis to reduce the complexity of resulting electropherograms and to facilitate the detection of the four inhibitors in question. De-O-sulfonated kotalanol was detected in two of four Salacia samples while ponkoranol was present in all four. A comparison of all samples tested demonstrated that they had remarkably similar patterns of peaks, suggesting that this CZE method may be useful in the chemical fingerprinting of Salacia-containing products.


Asunto(s)
Electroforesis Capilar/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Glucosidasas/antagonistas & inhibidores , Salacia/química , Compuestos de Sulfonio/aislamiento & purificación , Calibración , Electroforesis Capilar/economía , Límite de Detección
16.
Bioorg Med Chem ; 18(22): 7794-8, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20970346

RESUMEN

In order to probe the active-site requirements of the human N-terminal subunit of maltase-glucoamylase (ntMGAM), one of the clinically relevant intestinal enzymes targeted for the treatment of type-2 diabetes, the syntheses of two new inhibitors are described. The target compounds are structural hybrids of kotalanol, a naturally occurring glucosidase inhibitor with a unique five-membered ring sulfonium-sulfate inner salt structure, and miglitol, a six-membered ring antidiabetic drug that is currently in clinical use. The compounds comprise the six-membered ring of miglitol and the side chain of kotalanol or its de-O-sulfonated derivative. Inhibition studies of these hybrid molecules with human ntMGAM indicated that they are inhibitors of this enzyme with comparable K(i) values to that of miglitol (kotalanol analogue: 2.3±0.6µM; corresponding de-O-sulfonated analogue: 1.4±0.5µM; miglitol: 1.0±0.1µM). However, they are less active compared to kotalanol (K(i)=0.19±0.03µM). These results suggest that the (3)T(2) enzyme-bound conformation of the five-membered thiocyclitol moiety of the kotalanol class of compounds more closely resembles the (4)H(3) conformation of the proposed transition state for the formation of an enzyme-substrate covalent intermediate in the glycosidase hydrolase family 31 (GH31)-catalyzed reaction.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores de Glicósido Hidrolasas , Monosacáridos/química , Nitrógeno/química , Sulfatos/química , Sulfonas/química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacología , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/farmacología , Humanos , Intestinos/enzimología , Cinética , Monosacáridos/síntesis química , Monosacáridos/farmacología , Relación Estructura-Actividad , Sulfatos/síntesis química , Sulfatos/farmacología , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo
17.
J Am Chem Soc ; 131(15): 5621-6, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19331410

RESUMEN

Kotalanol and de-O-sulfonated-kotalanol are the most active principles in the aqueous extracts of Salacia reticulata which are traditionally used in India, Sri Lanka, and Thailand for the treatment of diabetes. We report here the exact stereochemical structures of these two compounds by synthesis and comparison of their physical data to those of the corresponding natural compounds. The candidate structures were based on our recent report on the synthesis of analogues and also the structure-activity relationship studies of lower homologues. The initial synthetic strategy relied on the selective nucleophilic attack of p-methoxybenzyl (PMB)-protected 4-thio-D-arabinitol at the least hindered carbon atom of two different, selectively protected 1,3-cyclic sulfates to afford the sulfonium sulfates. The protecting groups consisted of a methylene acetal, in the form of a seven-membered ring, and benzyl ethers. Deprotection of the adducts yielded the sulfonium ions but also resulted in de-O-sulfonation. Comparison of the physical data of the two adducts to those reported for de-O-sulfonated natural kotalanol yielded the elusive structure of kotalanol by inference. The side chain of this compound was determined to be another naturally occurring heptitol, d-perseitol (d-glycero-d-galacto-heptitol) with a sulfonyloxy group at the C-5 position. The synthesis of kotalanol itself was then achieved by coupling PMB-protected 4-thio-d-arabinitol with a cyclic sulfate that was synthesized from the naturally occurring d-perseitol. The work establishes unambiguously the structures of two natural products, namely, kotalanol and de-O-sulfonated kotalanol.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glicósido Hidrolasas/antagonistas & inhibidores , Monosacáridos/química , Sulfatos/química , Inhibidores Enzimáticos/química , Inhibidores de Glicósido Hidrolasas , Medicina de Hierbas , Humanos , Estructura Molecular , Monosacáridos/síntesis química , Estereoisomerismo , Sulfatos/síntesis química
18.
Carbohydr Res ; 342(12-13): 1551-80, 2007 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-17559821

RESUMEN

Natural products with interesting biological properties and structural diversity have often served as valuable lead drug candidates for the treatment of human diseases. Salacinol, a naturally occurring alpha-glucosidase inhibitor, was shown to be one of the active principles of the aqueous extract of a medicinal plant that has been prescribed traditionally as an Ayurvedic treatment for type II diabetes. Salacinol contains an intriguing zwitterionic sulfonium-sulfate structure that comprises a 1,4-anhydro-4-thio-D-arabinitol core and a polyhydroxylated acyclic chain. Due to the unique structural features and its potential to become a lead drug candidate in the treatment of type II diabetes, a great deal of attention has been focused on salacinol and its analogues. Since the isolation of salacinol, several papers describing various synthetic routes to salacinol and its analogues have appeared in the literature. This review is aimed at highlighting the synthetic aspects of salacinol and related compounds as well as their structure-activity relationship studies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Alcoholes del Azúcar/farmacología , Sulfatos/farmacología , Conformación de Carbohidratos , Glicósido Hidrolasas/química , Iminas/farmacología , Modelos Moleculares , Relación Estructura-Actividad , Alcoholes del Azúcar/química , Sulfatos/química
19.
Carbohydr Res ; 342(7): 901-12, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17316580

RESUMEN

The syntheses of nine S-alkylated, cyclic sulfonium-ions with varying alkyl chain lengths, as mimics of N-alkylated imino sugars, and their glucosidase inhibitory activities are described. The target compounds were synthesized by alkylation of 2,3,5-tri-O-benzyl-1,4-anhydro-4-thio-d-arabinitol at the ring sulfur atom using various alkyl halides, followed by deprotection using boron trichloride. Enzyme inhibitory assays against recombinant human maltase glucoamylase (MGA), a critical enzyme in the small intestine involved in the breakdown of glucose oligosaccharides into glucose itself, shows that they are effective inhibitors of MGA with K(i) values ranging from 6 to 75 microM.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Glucosidasas/antagonistas & inhibidores , Compuestos de Sulfonio/síntesis química , alfa-Glucosidasas/metabolismo , Alquilación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Proteínas Recombinantes/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/farmacología , alfa-Glucosidasas/genética
20.
Carbohydr Res ; 419: 1-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595659

RESUMEN

Uridine diphosphate-galactopyranose mutase (UGM), an enzyme found in many eukaryotic and prokaryotic human pathogens, catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf), the latter being used as the biosynthetic precursor of the galactofuranose polymer portion of the mycobacterium cell wall. We report here the synthesis of a sulfonium and selenonium ion with an appended polyhydroxylated side chain. These compounds were designed as transition state mimics of the UGM-catalyzed reaction, where the head groups carrying a permanent positive charge were designed to mimic both the shape and positive charge of the proposed galactopyranosyl cation-like transition state. An HPLC-based UGM inhibition assay indicated that the compounds inhibited about 25% of UGM activity at 500 µM concentration.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Galactosa/análogos & derivados , Isomerasas/antagonistas & inhibidores , Uridina Difosfato/análogos & derivados , Biocatálisis , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Galactosa/metabolismo , Hidroxilación , Isomerasas/metabolismo , Mycobacterium tuberculosis/enzimología , Compuestos de Selenio/síntesis química , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Compuestos de Sulfonio/síntesis química , Compuestos de Sulfonio/química , Compuestos de Sulfonio/farmacología , Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA