Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 997747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36866106

RESUMEN

The incidences of colorectal cancer (CRC) are continuously increasing in some areas of the world, including Malaysia. In this study, we aimed to characterize the landscape of somatic mutations using the whole-genome sequencing approach and identify druggable somatic mutations specific to Malaysian patients. Whole-genome sequencing was performed on the genomic DNA obtained from 50 Malaysian CRC patients' tissues. We discovered the top significantly mutated genes were APC, TP53, KRAS, TCF7L2 and ACVR2A. Four novel, non-synonymous variants were identified in three genes, which were KDM4E, MUC16 and POTED. At least one druggable somatic alteration was identified in 88% of our patients. Among them were two frameshift mutations in RNF43 (G156fs and P192fs) predicted to have responsive effects against the Wnt pathway inhibitor. We found that the exogenous expression of this RNF43 mutation in CRC cells resulted in increased cell proliferation and sensitivity against LGK974 drug treatment and G1 cell cycle arrest. In conclusion, this study uncovered our local CRC patients' genomic landscape and druggable alterations. It also highlighted the role of specific RNF43 frameshift mutations, which unveil the potential of an alternative treatment targeting the Wnt/ß-Catenin signalling pathway and could be beneficial, especially to Malaysian CRC patients.

2.
Life (Basel) ; 12(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35743803

RESUMEN

Colorectal cancer (CRC) ranks second among the most commonly occurring cancers in Malaysia, and unfortunately, its pathobiology remains unknown. CRC pathobiology can be understood in detail with the implementation of omics technology that is able to generate vast amounts of molecular data. The generation of omics data has introduced a new challenge for data organization. Therefore, a knowledge-based repository, namely TCGA-My, was developed to systematically store and organize CRC omics data for Malaysian patients. TCGA-My stores the genome and metabolome of Malaysian CRC patients. The genome and metabolome datasets were organized using a Python module, pandas. The variants and metabolites were first annotated with their biological information using gene ontologies (GOs) vocabulary. The TCGA-My relational database was then built using HeidiSQL PorTable 9.4.0.512, and Laravel was used to design the web interface. Currently, TCGA-My stores 1,517,841 variants, 23,695 genes, and 167,451 metabolites from the samples of 50 CRC patients. Data entries can be accessed via search and browse menus. TCGA-My aims to offer effective and systematic omics data management, allowing it to become the main resource for Malaysian CRC research, particularly in the context of biomarker identification for precision medicine.

3.
Front Pharmacol ; 11: 135, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174835

RESUMEN

Colorectal cancer (CRC) is among the most common cancer worldwide, a challenge for research, and a model for studying the molecular mechanisms involved in its development. Previously, bulk transcriptomics analyses were utilized to classify CRC based on its distinct molecular and clinicopathological features for prognosis and diagnosis of patients. The introduction of single-cell transcriptomics completely turned the table by enabling the examination of the expression levels of individual cancer cell within a single tumor. In this review, we highlighted the importance of these single-cell transcriptomics analyses as well as suggesting circulating tumor cells (CTCs) as the main focus of single-cell RNA sequencing. Characterization of these cells might reveal the intratumoral heterogeneity present in CRC while providing critical insights into cancer metastasis. To summarize, we believed the analysis of gene expression patterns of CTC from CRC at single-cell resolution holds the potential to provide key information for identification of prognostic and diagnostic markers as well as the development of precise and personalized cancer treatment.

4.
Biomolecules ; 10(3)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245111

RESUMEN

Global statistics have placed colorectal cancer (CRC) as the third most frequently diagnosed cancer and the fourth principal cause of cancer-related deaths worldwide. Improving survival for CRC is as important as early detection. Personalized medicine is important in maximizing an individual's treatment success and minimizing the risk of adverse reactions. Approaches in achieving personalized therapy in CRC have included analyses of specific genes with its clinical implications. Tumour genotyping via next-generation sequencing has become a standard practice to guide clinicians into predicting tumor behaviour, disease prognosis, and treatment response. Nevertheless, better prognostic markers are necessary to further stratify patients for personalized treatment plans. The discovery of new markers remains indispensable in providing the most effective chemotherapy in order to improve the outcomes of treatment and survival in CRC patients. This review aims to compile and discuss newly discovered, less frequently mutated genes in CRC. We also discuss how these mutations are being used to assist therapeutic decisions and their potential prospective clinical utilities. In addition, we will summarize the importance of profiling the large genomic rearrangements, gene amplification, and large deletions and how these alterations may assist in determining the best treatment option for CRC patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Genes Relacionados con las Neoplasias , Mutación , Medicina de Precisión , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/terapia , Humanos
5.
BMC Res Notes ; 7: 805, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25404506

RESUMEN

BACKGROUND: High grade serous ovarian cancer is one of the poorly characterized malignancies. This study aimed to elucidate the mutational events in Malaysian patients with high grade serous ovarian cancer by performing targeted sequencing on 50 cancer hotspot genes. RESULTS: Nine high grade serous ovarian carcinoma samples and ten normal ovarian tissues were obtained from Universiti Kebangsaan Malaysia Medical Center (UKMMC) and the Kajang Hospital. The Ion AmpliSeq™ Cancer Hotspot Panel v2 targeting "mutation-hotspot region" in 50 most common cancer-associated genes was utilized. A total of 20 variants were identified in 12 genes. Eleven (55%) were silent alterations and nine (45%) were missense mutations. Six of the nine missense mutations were predicted to be deleterious while the other three have low or neutral protein impact. Eight genes were altered in both the tumor and normal groups (APC, EGFR, FGFR3, KDR, MET, PDGFRA, RET and SMO) while four genes (TP53, PIK3CA, STK11 and KIT) were exclusively altered in the tumor group. TP53 alterations were present in all the tumors but not in the normal group. Six deleterious mutations in TP53 (p.R175H, p.H193R, p.Y220C, p.Y163C, p.R282G and p.Y234H) were identified in eight serous ovarian carcinoma samples and none in the normal group. CONCLUSION: TP53 remains as the most frequently altered gene in high grade serous ovarian cancer and Ion Torrent Personal Genome Machine (PGM) in combination with Ion Ampliseq™ Cancer Hotspot Panel v2 were proven to be instrumental in identifying a wide range of genetic alterations simultaneously from a minute amount of DNA. However, larger series of validation targeting more genes are necessary in order to shed a light on the molecular events underlying pathogenesis of this cancer.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario , Cistadenocarcinoma Seroso/epidemiología , Bases de Datos Genéticas , Femenino , Humanos , Persona de Mediana Edad , Mutación/genética , Clasificación del Tumor , Neoplasias Glandulares y Epiteliales/epidemiología , Neoplasias Ováricas/epidemiología , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA