Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2213450119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256818

RESUMEN

Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. Rhodococcus rhodochrous GD02 was previously isolated for growth on acetovanillone. A high-quality genome sequence of GD02 was generated. Transcriptomic analyses revealed a cluster of eight genes up-regulated during growth on acetovanillone and 4-hydroxyacetophenone, as well as a two-gene cluster up-regulated during growth on acetophenone. Bioinformatic analyses predicted that the hydroxyphenylethanone (Hpe) pathway proceeds via phosphorylation and carboxylation, before ß-elimination yields vanillate from acetovanillone or 4-hydroxybenzoate from 4-hydroxyacetophenone. Consistent with this prediction, the kinase, HpeHI, phosphorylated acetovanillone and 4-hydroxyacetophenone. Furthermore, HpeCBA, a biotin-dependent enzyme, catalyzed the ATP-dependent carboxylation of 4-phospho-acetovanillone but not acetovanillone. The carboxylase's specificity for 4-phospho-acetophenone (kcat/KM = 34 ± 2 mM-1 s-1) was approximately an order of magnitude higher than for 4-phospho-acetovanillone. HpeD catalyzed the efficient dephosphorylation of the carboxylated products. GD02 grew on a preparation of pine lignin produced by oxidative catalytic fractionation, depleting all of the acetovanillone, vanillin, and vanillate. Genomic and metagenomic searches indicated that the Hpe pathway occurs in a relatively small number of bacteria. This study facilitates the design of bacterial strains for biocatalytic applications by identifying a pathway for the degradation of acetovanillone.


Asunto(s)
Biotina , Lignina , Lignina/metabolismo , Acetofenonas , Adenosina Trifosfato
2.
Eur J Immunol ; 53(10): e2350394, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37431194

RESUMEN

Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.


Asunto(s)
Asma , Microbioma Gastrointestinal , Embarazo , Niño , Humanos , Femenino , Antibacterianos/efectos adversos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Disbiosis , Inflamación , Pulmón
3.
Proc Natl Acad Sci U S A ; 117(41): 25771-25778, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989155

RESUMEN

Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the O-demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains Rhodococcus rhodochrous EP4 and Rhodococcus jostii RHA1 both utilized alkylguaiacols as sole growth substrates. Transcriptomics of EP4 grown on 4-propylguaiacol (4PG) revealed the up-regulation of agcA, encoding a CYP255A1 family P450, and the aph genes, previously shown to encode a meta-cleavage pathway responsible for 4-alkylphenol catabolism. The function of the homologous pathway in RHA1 was confirmed: Deletion mutants of agcA and aphC, encoding the meta-cleavage alkylcatechol dioxygenase, grew on guaiacol but not 4PG. By contrast, deletion mutants of gcoA and pcaL, encoding a CYP255A2 family P450 and an ortho-cleavage pathway enzyme, respectively, grew on 4-propylguaiacol but not guaiacol. CYP255A1 from EP4 catalyzed the O-demethylation of 4-alkylguaiacols to 4-alkylcatechols with the following apparent specificities (kcat/KM): propyl > ethyl > methyl > guaiacol. This order largely reflected AgcA's binding affinities for the different guaiacols and was the inverse of GcoAEP4's specificities. The biocatalytic potential of AgcA was demonstrated by the ability of EP4 to grow on lignin-derived products obtained from the reductive catalytic fractionation of corn stover, depleting alkylguaiacols and alkylphenols. By identifying related P450s with complementary specificities for lignin-relevant guaiacols, this study facilitates the design of these enzymes for biocatalytic applications. We further demonstrated that the metabolic fate of the guaiacol depends on its substitution pattern, a finding that has significant implications for engineering biocatalysts to valorize lignin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Guayacol/metabolismo , Lignina/metabolismo , Rhodococcus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Guayacol/química , Cinética , Lignina/química , Rhodococcus/química , Rhodococcus/genética , Rhodococcus/metabolismo , Especificidad por Sustrato
4.
J Immunol ; 205(10): 2618-2628, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33067377

RESUMEN

In both high- and low-income countries, HIV-negative children born to HIV-positive mothers (HIV exposed, uninfected [HEU]) are more susceptible to severe infection than HIV-unexposed, uninfected (HUU) children, with altered innate immunity hypothesized to be a cause. Both the gut microbiome and systemic innate immunity differ across biogeographically distinct settings, and the two are known to influence each other. And although the gut microbiome is influenced by HIV infection and may contribute to altered immunity, the biogeography of immune-microbiome correlations among HEU children have not been investigated. To address this, we compared the innate response and the stool microbiome of 2-y-old HEU and HUU children from Belgium, Canada, and South Africa to test the hypothesis that region-specific immune alterations directly correlate to differences in their stool microbiomes. We did not detect a universal immune or microbiome signature underlying differences between HEU versus HUU that was applicable to all children. But as hypothesized, population-specific differences in stool microbiomes were readily detected and included reduced abundances of short-chain fatty acid-producing bacteria in Canadian HEU children. Furthermore, we did not identify innate immune-microbiome associations that distinguished HEU from HUU children in any population. These findings suggest that maternal HIV infection is independently associated with differences in both innate immunity and the stool microbiome in a biogeographical population-specific way.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Infecciones por VIH/inmunología , Inmunidad Innata , Bélgica , Canadá , Preescolar , Estudios de Cohortes , Heces/microbiología , Femenino , Geografía , Infecciones por VIH/microbiología , Humanos , Lactante , Masculino , Sudáfrica
5.
Appl Environ Microbiol ; 87(19): e0098721, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260303

RESUMEN

Bile salts are amphiphilic steroids with digestive functions in vertebrates. Upon excretion, bile salts are degraded by environmental bacteria. Degradation of the bile salt steroid skeleton resembles the well-studied pathway for other steroids, like testosterone, while specific differences occur during side chain degradation and the initiating transformations of the steroid skeleton. Of the latter, two variants via either Δ1,4- or Δ4,6-3-ketostructures of the steroid skeleton exist for 7-hydroxy bile salts. While the Δ1,4 variant is well known from many model organisms, the Δ4,6 variant involving a 7-hydroxysteroid dehydratase as a key enzyme has not been systematically studied. Here, combined proteomic, bioinformatic, and functional analyses of the Δ4,6 variant in Sphingobium sp. strain Chol11 were performed. They revealed a degradation of the steroid rings similar to that of the Δ1,4 variant except for the elimination of the 7-OH as a key difference. In contrast, differential production of the respective proteins revealed a putative gene cluster for the degradation of the C5 carboxylic side chain encoding a CoA ligase, an acyl-CoA dehydrogenase, a Rieske monooxygenase, and an amidase but lacking most canonical genes known from other steroid-degrading bacteria. Bioinformatic analyses predicted the Δ4,6 variant to be widespread among the Sphingomonadaceae, which was verified for three type strains which also have the predicted side chain degradation cluster. A second amidase in the side chain degradation gene cluster of strain Chol11 was shown to cleave conjugated bile salts while having low similarity to known bile salt hydrolases. This study identifies members of the Sphingomonadaceae that are remarkably well adapted to the utilization of bile salts via a partially distinct metabolic pathway. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds, in particular bile salts. Furthermore, it substantiates and advances knowledge of a variant pathway for degradation of steroids by sphingomonads, a group of environmental bacteria that are well known for their broad metabolic capabilities. Biodegradation of bile salts is a critical process due to the high input of these compounds from manure into agricultural soils and wastewater treatment plants. In addition, these results may also be relevant for the biotechnological production of bile salts or other steroid compounds with pharmaceutical functions.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Sphingomonadaceae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Biología Computacional , Redes y Vías Metabólicas , Proteoma , Sphingomonadaceae/genética
6.
J Immunol ; 202(3): 956-965, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30617224

RESUMEN

The cytokine IL-22 is rapidly induced at barrier surfaces where it regulates host-protective antimicrobial immunity and tissue repair but can also enhance disease severity in some chronic inflammatory settings. Using the chronic Salmonella gastroenteritis model, Ab-mediated neutralization of IL-22 impaired intestinal epithelial barrier integrity and, consequently, exaggerated expression of proinflammatory cytokines. As disease normally resolved, neutralization of IL-22 caused luminal narrowing of the cecum-a feature reminiscent of fibrotic strictures seen in Crohn disease patients. Corresponding to the exaggerated immunopathology caused by IL-22 suppression, Salmonella burdens in the gut were reduced. This enhanced inflammation and pathogen clearance was associated with alterations in gut microbiome composition, including the overgrowth of Bacteroides acidifaciens Our findings thus indicate that IL-22 plays a protective role by limiting infection-induced gut immunopathology but can also lead to persistent pathogen colonization.


Asunto(s)
Gastroenteritis/inmunología , Microbioma Gastrointestinal , Interleucinas/inmunología , Salmonelosis Animal/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Bacteroides , Ciego/inmunología , Ciego/patología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Citocinas/inmunología , Gastroenteritis/microbiología , Inflamación , Interleucinas/antagonistas & inhibidores , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Inducción de Remisión , Salmonelosis Animal/terapia , Salmonella typhimurium , Interleucina-22
7.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31704679

RESUMEN

Steryl esters (SEs) are important storage compounds in many eukaryotes and are often prominent components of intracellular lipid droplets. Here, we demonstrate that selected Actino- and Proteobacteria growing on sterols are also able to synthesize SEs and to sequester them in cytoplasmic lipid droplets. We found cholesteryl ester (CE) formation in members of the actinobacterial genera Rhodococcus, Mycobacterium, and Amycolatopsis, as well as several members of the proteobacterial Cellvibrionales order. CEs maximally accumulated under nitrogen-limiting conditions, suggesting that steryl ester formation plays a crucial role for storing excess energy and carbon under adverse conditions. Rhodococcus jostii RHA1 was able to synthesize phytosteryl and cholesteryl esters, the latter reaching up to 7% of its cellular dry weight and 69% of its lipid droplets. Purified lipid droplets from RHA1 contained CEs, free cholesterol, and triacylglycerols. In addition, we found formation of CEs in Mycobacterium tuberculosis when it was grown with cholesterol plus an additional fatty acid substrate. This study provides a basis for the application of bacterial whole-cell systems in the biotechnological production of SEs for use in functional foods and cosmetics.IMPORTANCE Oleaginous bacteria exhibit great potential for the production of high-value neutral lipids, such as triacylglycerols and wax esters. This study describes the formation of steryl esters (SEs) as neutral lipid storage compounds in sterol-degrading oleaginous bacteria, providing a basis for biotechnological production of SEs using bacterial systems with potential applications in the functional food, nutraceutical, and cosmetic industries. We found cholesteryl ester (CE) formation in several sterol-degrading Actino- and Proteobacteria under nitrogen-limiting conditions, suggesting an important role of this process in storing energy and carbon under adverse conditions. In addition, Mycobacterium tuberculosis grown on cholesterol accumulated CEs in the presence of an additional fatty acid substrate.


Asunto(s)
Bacterias/metabolismo , Ésteres/metabolismo , Esteroides/metabolismo , Esteroles/metabolismo , Gotas Lipídicas/metabolismo
8.
Allergy ; 75(8): 1979-1990, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32064643

RESUMEN

BACKGROUND: The use of antibiotics during pregnancy is associated with increased allergic asthma risk in the offspring, and given that approximately 25% of pregnant women are prescribed antibiotics, it is important to understand the mechanisms contributing to this phenomenon. Currently, there are no studies that directly test this association experimentally. Our objective was to develop a mouse model in which antibiotic treatment during pregnancy results in increased offspring asthma susceptibility. METHODS: Pregnant mice were treated daily from gestation day 8-17 with an oral solution of the antibiotic vancomycin, and three concentrations were tested. At weaning, offspring were subjected to an adjuvant-free experimental asthma protocol using ovalbumin as an allergen. The composition of the gut microbiome was determined in mothers and offspring with samples collected from five different time points; short-chain fatty acids were also analyzed in allergic offspring. RESULTS: We found that maternal antibiotic treatment during pregnancy was associated with increased offspring asthma severity in a dose-dependent manner. Furthermore, maternal vancomycin treatment during pregnancy caused marked changes in the gut microbiome composition in both mothers and pups at several different time points. The increased asthma severity and intestinal microbiome changes in pups were also associated with significantly decreased cecal short-chain fatty acid concentrations. CONCLUSION: Consistent with the "Developmental Origins Hypothesis," our results confirm that exposure to antibiotics during pregnancy shapes the neonatal intestinal environment and increases offspring allergic lung inflammation.


Asunto(s)
Asma , Hipersensibilidad , Efectos Tardíos de la Exposición Prenatal , Animales , Antibacterianos/efectos adversos , Asma/tratamiento farmacológico , Asma/etiología , Femenino , Humanos , Ratones , Ovalbúmina , Embarazo
9.
J Allergy Clin Immunol ; 143(2): 467-485, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30600099

RESUMEN

The intestinal microbiota plays an important role in development of the immune system and regulation of immune responses. This review summarizes the association between the intestinal microbiota and the development of allergic sensitization, eczema, and asthma in neonates and children. Overall, a greater relative abundance of Bacteroidaceae, Clostridiaceae, and Enterobacteriaceae and a lower relative abundance of Bifidobacteriaceae and Lactobacillaceae is associated with the development of allergic sensitization, eczema, or asthma. Reduced bacterial diversity can be associated with the development of allergic disease. The association between the composition of the intestinal microbiota and the development of allergic disease or asthma is less consistent in older children than in neonates, suggesting that early-life microbial exposure plays a more important role. Inconsistencies in the results reported from different studies might partly be explained by heterogeneity in design, study populations, diagnostic criteria, microbiota analysis methods, and reporting on different taxonomic levels. Larger studies that better account for antenatal and postnatal factors will further help determine specific microbial intestinal signatures associated with increased risk of allergy and asthma. This will enable the early identification of infants at high risk and facilitate novel strategies and interventions to prevent and treat these conditions, including modifying the intestinal microbiota early in life.


Asunto(s)
Asma/microbiología , Bifidobacterium/genética , Clostridium/genética , Microbioma Gastrointestinal/fisiología , Hipersensibilidad/microbiología , Lactobacillus/genética , ARN Ribosómico 16S/genética , Animales , Asma/inmunología , Biodiversidad , Niño , Eccema , Humanos , Hipersensibilidad/inmunología , Inmunización , Recién Nacido , Riesgo
10.
J Allergy Clin Immunol ; 144(6): 1638-1647.e3, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31279007

RESUMEN

BACKGROUND: Allergic disease is the most frequent chronic health issue in children and has been linked to early-life gut microbiome dysbiosis. Many lines of evidence suggest that microbially derived short-chain fatty acids, and particularly butyrate, can promote immune tolerance. OBJECTIVE: We sought to determine whether bacterial butyrate production in the gut during early infancy is protective against the development of atopic disease in children. METHODS: We used shotgun metagenomic analysis to determine whether dysbiosis in butyrate fermentation could be identified in human infants, before their developing allergic disease. RESULTS: We found that the microbiome of infants who went on to develop allergic sensitization later in childhood lacked genes encoding key enzymes for carbohydrate breakdown and butyrate production. CONCLUSIONS: Our findings support the importance of microbial carbohydrate metabolism during early infancy in protecting against the development of allergies.


Asunto(s)
Bacterias , Ácido Butírico , Disbiosis , Microbioma Gastrointestinal , Hipersensibilidad , Bacterias/clasificación , Bacterias/genética , Bacterias/inmunología , Bacterias/metabolismo , Ácido Butírico/inmunología , Ácido Butírico/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/inmunología , Preescolar , Disbiosis/genética , Disbiosis/inmunología , Disbiosis/metabolismo , Disbiosis/microbiología , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Hipersensibilidad/prevención & control , Lactante , Estudios Longitudinales , Masculino , Metagenoma , Estudios Prospectivos
11.
Environ Microbiol ; 20(3): 1185-1203, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29417706

RESUMEN

Although previous studies, mostly based on microscopy analyses of a few groups of protists, have suggested that protists are abundant and diverse in litter and moss habitats, the overall diversity of moss and litter associated protists remains elusive. Here, high-throughput environmental sequencing was used to characterize the diversity and community structure of litter- and moss-associated protists along a gradient of soil drainage and forest primary productivity in a temperate rainforest in British Columbia. We identified 3262 distinct protist OTUs from 36 sites. Protists were strongly structured along the landscape gradient, with a significant increase in alpha diversity from the blanket bog ecosystem to the zonal forest ecosystem. Among all investigated environmental variables, calcium content was the most strongly associated with the community composition of protists, but substrate composition, plant cover and other edaphic factors were also significantly correlated with these communities. Furthermore, a detailed phylogenetic analysis of unicellular opisthokonts identified OTUs covering most lineages, including novel OTUs branching with Discicristoidea, the sister group of Fungi, and with Filasterea, one of the closest unicellular relatives to animals. Altogether, this study provides unprecedented insight into the community composition of moss- and litter-associated protists.


Asunto(s)
Biodiversidad , Briófitas/parasitología , Eucariontes/clasificación , Eucariontes/aislamiento & purificación , Suelo/parasitología , Animales , Ecosistema , Eucariontes/crecimiento & desarrollo , Residuos de Alimentos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Bosque Lluvioso , Suelo/química
12.
New Phytol ; 214(1): 400-411, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27870059

RESUMEN

Processes governing the fixation, partitioning, and mineralization of carbon in soils are under increasing scrutiny as we develop a more comprehensive understanding of global carbon cycling. Here we examined fixation by Douglas-fir seedlings and transfer to associated ectomycorrhizal fungi, soil microbes, and full-sibling or nonsibling neighbouring seedlings. Stable isotope probing with 99% 13 C-CO2 was applied to trace 13 C-labelled photosynthate throughout plants, fungi, and soil microbes in an experiment designed to assess the effect of relatedness on 13 C transfer between plant pairs. The fixation and transfer of the 13 C label to plant, fungal, and soil microbial tissue was examined in biomass and phospholipid fatty acids. After a 6 d chase period, c. 26.8% of the 13 C remaining in the system was translocated below ground. Enrichment was proportionally greatest in ectomycorrhizal biomass. The presence of mesh barriers (0.5 or 35 µm) between seedlings did not restrict 13 C transfer. Fungi were the primary recipients of 13 C-labelled photosynthate throughout the system, representing 60-70% of total 13 C-enriched phospholipids. Full-sibling pairs exhibited significantly greater 13 C transfer to recipient roots in two of four Douglas-fir families, representing three- and fourfold increases (+ c. 4 µg excess 13 C) compared with nonsibling pairs. The existence of a root/mycorrhizal exudation-hyphal uptake pathway was supported.


Asunto(s)
Isótopos de Carbono/metabolismo , Micorrizas/metabolismo , Exudados de Plantas/metabolismo , Pseudotsuga/metabolismo , Pseudotsuga/microbiología , Plantones/metabolismo , Plantones/microbiología , Carbono/metabolismo , Hongos/metabolismo , Hifa/metabolismo , Modelos Lineales , Meristema/microbiología , Fosfolípidos/metabolismo , Fotosíntesis , Suelo/química
13.
Proc Natl Acad Sci U S A ; 111(28): 10143-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982175

RESUMEN

Engineering the microbial transformation of lignocellulosic biomass is essential to developing modern biorefining processes that alleviate reliance on petroleum-derived energy and chemicals. Many current bioprocess streams depend on the genetic tractability of Escherichia coli with a primary emphasis on engineering cellulose/hemicellulose catabolism, small molecule production, and resistance to product inhibition. Conversely, bioprocess streams for lignin transformation remain embryonic, with relatively few environmental strains or enzymes implicated. Here we develop a biosensor responsive to monoaromatic lignin transformation products compatible with functional screening in E. coli. We use this biosensor to retrieve metagenomic scaffolds sourced from coal bed bacterial communities conferring an array of lignin transformation phenotypes that synergize in combination. Transposon mutagenesis and comparative sequence analysis of active clones identified genes encoding six functional classes mediating lignin transformation phenotypes that appear to be rearrayed in nature via horizontal gene transfer. Lignin transformation activity was then demonstrated for one of the predicted gene products encoding a multicopper oxidase to validate the screen. These results illuminate cellular and community-wide networks acting on aromatic polymers and expand the toolkit for engineering recombinant lignin transformation based on ecological design principles.


Asunto(s)
Escherichia coli K12 , Lignina/metabolismo , Ingeniería Metabólica , Metagenómica , Secuencia de Bases , Biotransformación , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Datos de Secuencia Molecular , Pseudomonas stutzeri/genética
14.
Clin Sci (Lond) ; 130(23): 2199-2207, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27634868

RESUMEN

Asthma is a chronic disease of the airways affecting one in ten children in Westernized countries. Recently, our group showed that specific bacterial genera in early life are associated with atopy and wheezing in 1-year-old children. However, little is known about the link between the early life gut microbiome and the diagnosis of asthma in preschool age children. To determine the role of the gut microbiota in preschool age asthma, children up to 4 years of age enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) study were classified as asthmatic (n=39) or matched healthy controls (n=37). 16S rRNA sequencing and quantitative PCR (qPCR) were used to analyse the composition of the 3-month and 1-year gut microbiome of these children. At 3 months the abundance of the genus, Lachnospira (L), was decreased (P=0.008), whereas the abundance of the species, Clostridium neonatale (C), was increased (P=0.07) in asthmatics. Quartile analysis of stool composition at 3-months revealed a negative association between the ratio of these two bacteria (L/C) and asthma risk by 4 years of age [quartile 1: odds ratio (OR)=15, P=0.02, CI (confidence interval)= 1.8-124.7; quartile 2: OR=1.0, ns; quartile 3: OR=0.37, ns]. We conclude that opposing shifts in the relative abundances of Lachnospira and C. neonatale in the first 3 months of life are associated with preschool age asthma, and that the L/C ratio may serve as a potential early life biomarker to predict asthma development.


Asunto(s)
Asma/microbiología , Clostridium/aislamiento & purificación , Heces/microbiología , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal , Canadá , Estudios de Casos y Controles , Preescolar , Clostridium/genética , Clostridium/crecimiento & desarrollo , Femenino , Firmicutes/genética , Firmicutes/crecimiento & desarrollo , Humanos , Lactante , Masculino
15.
Am J Respir Crit Care Med ; 192(4): 438-45, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25945594

RESUMEN

RATIONALE: The relatively sparse but diverse microbiome in human lungs may become less diverse in chronic obstructive pulmonary disease (COPD). This article examines the relationship of this microbiome to emphysematous tissue destruction, number of terminal bronchioles, infiltrating inflammatory cells, and host gene expression. METHODS: Culture-independent pyrosequencing microbiome analysis was used to examine the V3-V5 regions of bacterial 16S ribosomal DNA in 40 samples of lung from 5 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 4) and 28 samples from 4 donors (controls). A second protocol based on the V1-V3 regions was used to verify the bacterial microbiome results. Within lung tissue samples the microbiome was compared with results of micro-computed tomography, infiltrating inflammatory cells measured by quantitative histology, and host gene expression. MEASUREMENTS AND MAIN RESULTS: Ten operational taxonomic units (OTUs) was found sufficient to discriminate between control and GOLD stage 4 lung tissue, which included known pathogens such as Haemophilus influenzae. We also observed a decline in microbial diversity that was associated with emphysematous destruction, remodeling of the bronchiolar and alveolar tissue, and the infiltration of the tissue by CD4(+) T cells. Specific OTUs were also associated with neutrophils, eosinophils, and B-cell infiltration (P < 0.05). The expression profiles of 859 genes and 235 genes were associated with either enrichment or reductions of Firmicutes and Proteobacteria, respectively, at a false discovery rate cutoff of less than 0.1. CONCLUSIONS: These results support the hypothesis that there is a host immune response to microorganisms within the lung microbiome that appears to contribute to the pathogenesis of COPD.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Bronquiolos/patología , Linfocitos T CD4-Positivos , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infiltración Neutrófila , Enfermedad Pulmonar Obstructiva Crónica/inmunología
16.
J Allergy Clin Immunol ; 135(1): 100-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25145536

RESUMEN

BACKGROUND: Resident gut microbiota are now recognized as potent modifiers of host immune responses in various scenarios. Recently, we demonstrated that perinatal exposure to vancomycin, but not streptomycin, profoundly alters gut microbiota and enhances susceptibility to a TH2 model of allergic asthma. OBJECTIVE: Here we sought to further clarify the etiology of these changes by determining whether perinatal antibiotic treatment has a similar effect on the TH1/TH17-mediated lung disease, hypersensitivity pneumonitis. METHODS: Hypersensitivity pneumonitis was induced in C57BL/6 wild-type or recombination-activating gene 1-deficient mice treated perinatally with vancomycin or streptomycin by repeated intranasal administration of Saccharopolyspora rectivirgula antigen. Disease severity was assessed by measuring lung inflammation, pathology, cytokine responses, and serum antibodies. Microbial community analyses were performed on stool samples via 16S ribosomal RNA pyrosequencing and correlations between disease severity and specific bacterial taxa were identified. RESULTS: Surprisingly, in contrast to our findings in an allergic asthma model, we found that the severity of hypersensitivity pneumonitis was unaffected by vancomycin, but increased dramatically after streptomycin treatment. This likely reflects an effect on the adaptive, rather than innate, immune response because the effects of streptomycin were not observed during the early phases of disease and were abrogated in recombination-activating gene 1-deficient mice. Interestingly, Bacteroidetes dominated the intestinal microbiota of streptomycin-treated animals, while vancomycin promoted the expansion of the Firmicutes. CONCLUSIONS: Perinatal antibiotics exert highly selective effects on resident gut flora, which, in turn, lead to very specific alterations in susceptibility to TH2- or TH1/TH17-driven lung inflammatory disease.


Asunto(s)
Alveolitis Alérgica Extrínseca/inmunología , Alveolitis Alérgica Extrínseca/microbiología , Antibacterianos/efectos adversos , Tracto Gastrointestinal/microbiología , Microbiota , Estreptomicina/efectos adversos , Alveolitis Alérgica Extrínseca/sangre , Alveolitis Alérgica Extrínseca/patología , Animales , Animales Recién Nacidos , Citocinas/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Pulmón/inmunología , Pulmón/patología , Ratones Endogámicos C57BL , Saccharopolyspora , Índice de Severidad de la Enfermedad , Vancomicina/farmacología
17.
New Phytol ; 207(3): 858-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25757098

RESUMEN

Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate.


Asunto(s)
Adaptación Fisiológica , Micorrizas/fisiología , Pseudotsuga/microbiología , Plantones/microbiología , Suelo , Adaptación Fisiológica/efectos de los fármacos , Análisis de Varianza , Antifúngicos/farmacología , Biomasa , Colombia Británica , Clima , Recuento de Colonia Microbiana , Geografía , Micorrizas/efectos de los fármacos , Micorrizas/crecimiento & desarrollo , Pseudotsuga/efectos de los fármacos , Análisis de Regresión , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
18.
Appl Microbiol Biotechnol ; 99(1): 459-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25142696

RESUMEN

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a widely used explosive and a major soil and groundwater contaminant. Organisms such as Gordonia sp. KTR9, capable of degrading RDX and using it as an N source, may prove useful for bioremediation of contaminated sites. XplA is a cytochrome P450 monooxygenase responsible for RDX degradation. Expression of xplA in KTR9 was not induced by RDX but was strongly induced (50-fold) during N-limited growth. When glnR, encoding a regulatory protein affecting N assimilation in diverse Actinobacteria, was deleted from KTR9, the bacterium lost the ability to use nitrate, nitrite, and RDX as N sources. Deletion of glnR also abolished the inhibition of xplA expression by nitrite. Our results confirm the essential role of GlnR in regulating assimilation of nitrite, but there was no evidence for a direct role of GlnR in regulating XplA expression. Rather, the general availability of nitrogen repressed XplA expression. We conclude that the inability of the glnR mutant to use RDX as an N source was due to its inability to assimilate nitrite, an intermediate in the assimilation of nitrogen from RDX. Regulation of XplA does not seem adaptive for KTR9, but it is important for RDX bioremediation with KTR9 or similar bacteria.


Asunto(s)
Actinomycetales/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Expresión Génica , Nitrógeno/metabolismo , Triazinas/metabolismo , Actinomycetales/genética , Sistema Enzimático del Citocromo P-450/genética , Contaminantes Ambientales/metabolismo , Eliminación de Gen
19.
J Allergy Clin Immunol ; 133(3): 818-26.e4, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24290283

RESUMEN

BACKGROUND: Susceptibility to infection as well as response to vaccination varies among populations. To date, the underlying mechanisms responsible for these clinical observations have not been fully delineated. Because innate immunity instructs adaptive immunity, we hypothesized that differences between populations in innate immune responses may represent a mechanistic link to variation in susceptibility to infection or response to vaccination. OBJECTIVE: Determine whether differences in innate immune responses exist among infants from different continents of the world. METHODS: We determined the innate cytokine response following pattern recognition receptor (PRR) stimulation of whole blood from 2-year-old infants across 4 continents (Africa, North America, South America, and Europe). RESULTS: We found that despite the many possible genetic and environmental exposure differences in infants across 4 continents, innate cytokine responses were similar for infants from North America, South America, and Europe. However, cells from South African infants secreted significantly lower levels of cytokines than did cells from infants from the 3 other sites, and did so following stimulation of extracellular and endosomal but not cytosolic PRRs. CONCLUSIONS: Substantial differences in innate cytokine responses to PRR stimulation exist among different populations of infants that could not have been predicted. Delineating the underlying mechanism(s) for these differences will not only aid in improving vaccine-mediated protection but possibly also provide clues for the susceptibility to infection in different regions of the world.


Asunto(s)
Citocinas/biosíntesis , Receptores de Reconocimiento de Patrones/fisiología , Preescolar , Susceptibilidad a Enfermedades , Humanos , Inmunidad Innata , Lactante , Mortalidad Infantil , Infecciones/inmunología , Infecciones/mortalidad , Receptores Toll-Like/fisiología
20.
J Bacteriol ; 196(3): 579-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24244004

RESUMEN

Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for ß-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 10(5) ± 0.03 × 10(5) M(-1) s(-1)) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1ß(2'-propanoate)-3aα-H-4α(3″-propanoate)-7aß-methylhexahydro-5-indanone (kcat/Km = 2.4 × 10(5) ± 0.1 × 10(5) M(-1) s(-1) and 3.2 × 10(5) ± 0.3 × 10(5) M(-1) s(-1), respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and a phylogenetic classification enabling prediction of specific functions of related enzymes.


Asunto(s)
Coenzima A Ligasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Mycobacterium tuberculosis/enzimología , Esteroides/química , Esteroides/metabolismo , Coenzima A Ligasas/clasificación , Coenzima A Ligasas/genética , Estructura Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA