Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Plant Cell ; 36(5): 1257-1311, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301734

RESUMEN

Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.


Asunto(s)
Pared Celular , Pared Celular/metabolismo , Células Vegetales , Plantas/metabolismo
2.
Plant J ; 109(6): 1441-1456, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34908202

RESUMEN

Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Glucuronosiltransferasa/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo
3.
Molecules ; 25(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365966

RESUMEN

Biodegradable pectin polymers have been recommended for a variety of biomedical applications, ranging from the delivery of oral drugs to the repair of injured visceral organs. A promising approach to regulate pectin biostability is the blending of pectin films. To investigate the development of conjoined films, we examined the physical properties of high-methoxyl pectin polymer-polymer (homopolymer) interactions at the adhesive interface. Pectin polymers were tested in glass phase (10-13% w/w water content) and gel phase (38-41% w/w water content). The tensile strength of polymer-polymer adhesion was measured after variable development time and compressive force. Regardless of pretest parameters, the adhesive strength of two glass phase films was negligible. In contrast, adhesion testing of two gel phase films resulted in significant tensile adhesion strength (p < 0.01). Adhesion was also observed between glass phase and gel phase films-likely reflecting the diffusion of water from the gel phase to the glass phase films. In studies of the interaction between two gel phase films, the polymer-polymer adhesive strength increased linearly with increasing compressive force (range 10-80 N) (R2 = 0.956). In contrast, adhesive strength increased logarithmically with time (range 10-10,000 s) (R2 = 0.913); most of the adhesive strength was observed within minutes of contact. Fracture mechanics demonstrated that the adhesion of two gel phase films resulted in a conjoined film with distinctive physical properties including increased extensibility, decreased stiffness and a 30% increase in the work of cohesion relative to native polymers (p < 0.01). Scanning electron microscopy of the conjoined films demonstrated cross-grain adhesion at the interface between the adhesive homopolymers. These structural and functional data suggest that blended pectin films have emergent physical properties resulting from the cross-grain intermingling of interfacial pectin chains.


Asunto(s)
Biopolímeros/química , Membranas Artificiales , Pectinas/química , Agua/química , Difusión , Geles , Vidrio , Polisacáridos/química
4.
J Biol Chem ; 293(49): 19047-19063, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30327429

RESUMEN

Homogalacturonan (HG) is a pectic glycan in the plant cell wall that contributes to plant growth and development and cell wall structure and function, and interacts with other glycans and proteoglycans in the wall. HG is synthesized by the galacturonosyltransferase (GAUT) gene family. Two members of this family, GAUT1 and GAUT7, form a heteromeric enzyme complex in Arabidopsis thaliana Here, we established a heterologous GAUT expression system in HEK293 cells and show that co-expression of recombinant GAUT1 with GAUT7 results in the production of a soluble GAUT1:GAUT7 complex that catalyzes elongation of HG products in vitro The reaction rates, progress curves, and product distributions exhibited major differences dependent upon small changes in the degree of polymerization (DP) of the oligosaccharide acceptor. GAUT1:GAUT7 displayed >45-fold increased catalytic efficiency with DP11 acceptors relative to DP7 acceptors. Although GAUT1:GAUT7 synthesized high-molecular-weight polymeric HG (>100 kDa) in a substrate concentration-dependent manner typical of distributive (nonprocessive) glycosyltransferases with DP11 acceptors, reactions primed with short-chain acceptors resulted in a bimodal product distribution of glycan products that has previously been reported as evidence for a processive model of GT elongation. As an alternative to the processive glycosyltransfer model, a two-phase distributive elongation model is proposed in which a slow phase, which includes the de novo initiation of HG and elongation of short-chain acceptors, is distinguished from a phase of rapid elongation of intermediate- and long-chain acceptors. Upon reaching a critical chain length of DP11, GAUT1:GAUT7 elongates HG to high-molecular-weight products.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Glucuronosiltransferasa/metabolismo , Pectinas/biosíntesis , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Glucuronosiltransferasa/química , Células HEK293 , Humanos , Modelos Biológicos , Estructura Molecular , Pectinas/química , Electricidad Estática , Especificidad por Sustrato , Azúcares de Uridina Difosfato/metabolismo
5.
New Phytol ; 223(1): 293-309, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843213

RESUMEN

Genome-wide association studies (GWAS) have great promise for identifying the loci that contribute to adaptive variation, but the complex genetic architecture of many quantitative traits presents a substantial challenge. We measured 14 morphological and physiological traits and identified single nucleotide polymorphism (SNP)-phenotype associations in a Populus trichocarpa population distributed from California, USA to British Columbia, Canada. We used whole-genome resequencing data of 882 trees with more than 6.78 million SNPs, coupled with multitrait association to detect polymorphisms with potentially pleiotropic effects. Candidate genes were validated with functional data. Broad-sense heritability (H2 ) ranged from 0.30 to 0.56 for morphological traits and 0.08 to 0.36 for physiological traits. In total, 4 and 20 gene models were detected using the single-trait and multitrait association methods, respectively. Several of these associations were corroborated by additional lines of evidence, including co-expression networks, metabolite analyses, and direct confirmation of gene function through RNAi. Multitrait association identified many more significant associations than single-trait association, potentially revealing pleiotropic effects of individual genes. This approach can be particularly useful for challenging physiological traits such as water-use efficiency or complex traits such as leaf morphology, for which we were able to identify credible candidate genes by combining multitrait association with gene co-expression and co-methylation data.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Populus/genética , Populus/fisiología , Carácter Cuantitativo Heredable , Regulación hacia Abajo , Redes Reguladoras de Genes , Genes de Plantas , Genotipo , Geografía , Patrón de Herencia/genética , Análisis Multivariante , Estomas de Plantas/fisiología , Populus/anatomía & histología , Análisis de Componente Principal
6.
Plant Physiol ; 178(3): 1045-1064, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30228108

RESUMEN

Pectin is a vital component of the plant cell wall and provides the molecular glue that maintains cell-cell adhesion, among other functions. As the most complex wall polysaccharide, pectin is composed of several covalently linked domains, such as homogalacturonan (HG) and rhamnogalacturonan I (RG I). Pectin has widespread uses in the food industry and has emerging biomedical applications, but its synthesis remains poorly understood. For instance, the enzymes that catalyze RG I elongation remain unknown. Recently, a coexpression- and sequence-based MUCILAGE-RELATED (MUCI) reverse genetic screen uncovered hemicellulose biosynthetic enzymes in the Arabidopsis (Arabidopsis thaliana) seed coat. Here, we use an extension of this strategy to identify MUCI70 as the founding member of a glycosyltransferase family essential for the accumulation of seed mucilage, a gelatinous wall rich in unbranched RG I. Detailed biochemical and histological characterization of two muci70 mutants and two galacturonosyltransferase11 (gaut11) mutants identified MUCI70 and GAUT11 as required for two distinct RG I domains in seed mucilage. We demonstrate that, unlike MUCI70, GAUT11 catalyzes HG elongation in vitro and, thus, likely is required for the synthesis of an HG region important for RG I elongation. Analysis of a muci70 gaut11 double mutant confirmed that MUCI70 and GAUT11 are indispensable for the production and release of the bulk of mucilage RG I and for shaping the surface morphology of seeds. In addition, we uncover relationships between pectin and hemicelluloses and show that xylan is essential for the elongation of at least one RG I domain.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Glucuronosiltransferasa/metabolismo , Hidrolasas/fisiología , Pectinas/metabolismo , Mucílago de Planta/metabolismo , Semillas/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Glucuronosiltransferasa/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidrolasas/genética , Microscopía Electrónica de Rastreo , Filogenia , Mucílago de Planta/química , Mucílago de Planta/ultraestructura , Polisacáridos/metabolismo , Semillas/genética , Semillas/ultraestructura
7.
Molecules ; 25(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878302

RESUMEN

Abstract: Pectin binds the mesothelial glycocalyx of visceral organs, suggesting its potential role as a mesothelial sealant. To assess the mechanical properties of pectin films, we compared pectin films with a less than 50% degree of methyl esterification (low-methoxyl pectin, LMP) to films with greater than 50% methyl esterification (high-methoxyl pectin, HMP). LMP and HMP polymers were prepared by step-wise dissolution and high-shear mixing. Both LMP and HMP films demonstrated a comparable clear appearance. Fracture mechanics demonstrated that the LMP films had a lower burst strength than HMP films at a variety of calcium concentrations and hydration states. The water content also influenced the extensibility of the LMP films with increased extensibility (probe distance) with an increasing water content. Similar to the burst strength, the extensibility of the LMP films was less than that of HMP films. Flexural properties, demonstrated with the 3-point bend test, showed that the force required to displace the LMP films increased with an increased calcium concentration (p < 0.01). Toughness, here reflecting deformability (ductility), was variable, but increased with an increased calcium concentration. Similarly, titrations of calcium concentrations demonstrated LMP films with a decreased cohesive strength and increased stiffness. We conclude that LMP films, particularly with the addition of calcium up to 10 mM concentrations, demonstrate lower strength and toughness than comparable HMP films. These physical properties suggest that HMP has superior physical properties to LMP for selected biomedical applications.


Asunto(s)
Calcio/farmacología , Resistencia Flexional , Pectinas/química , Agua/química
8.
Plant Biotechnol J ; 15(6): 688-697, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27862852

RESUMEN

Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.


Asunto(s)
Panicum/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Biocombustibles , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
10.
Crit Rev Biochem Mol Biol ; 49(3): 212-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24564339

RESUMEN

Plant cells are surrounded by a carbohydrate-rich extracellular matrix known as the cell wall. Primary cell walls are laid down around dividing and elongating cells and consist largely of the polysaccharides cellulose, hemicelluloses, and pectin along with approximately 10% protein. Specific cells such as xylem vessels and fibers lay down a secondary wall rich in cellulose, hemicellulose, and lignin, with lesser amounts of pectin. Most of the models depict the plant cell wall as a matrix of separate polysaccharides. However, the recent identification of a proteoglycan that contains covalently attached pectin and xylan indicates that at least some of these wall glycans exist as domains within a single glycopolymer and that current models of the wall need to be revised. Furthermore, several cell wall biosynthesis mutants, including the secondary cell wall mutant irregular xylem (irx) 8, are affected in multiple cell wall polymers making it challenging to define the biochemical function of the mutated gene. The goal of this review is to provide a background for studying genes which encode secondary cell wall biosynthetic proteins whose mutation affects multiple wall polymers including xylan and lignin. We first review the phenotypes of the irx mutants and then summarize the current understanding of the structure and synthesis of xylan and lignin along with a review of transcription factors known to affect secondary wall synthesis. This review is intended to serve as a resource for those studying genes that encode proteins involved in the synthesis of plant secondary wall lignin and xylan.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Xilema/genética , Pared Celular/genética , Pared Celular/metabolismo , Celulosa/genética , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/genética , Mutación , Pectinas/genética , Pectinas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xilanos/genética , Xilema/metabolismo
11.
Plant Cell ; 25(1): 270-87, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23371948

RESUMEN

Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.


Asunto(s)
Arabidopsis/química , Pared Celular/química , Mucoproteínas/química , Pectinas/química , Proteoglicanos/química , Xilanos/química , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Biomasa , Pared Celular/genética , Pared Celular/metabolismo , Epítopos , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Glicoproteínas/metabolismo , Modelos Estructurales , Datos de Secuencia Molecular , Mucoproteínas/genética , Mucoproteínas/inmunología , Mucoproteínas/metabolismo , Mutación , Pectinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Isoformas de Proteínas , Proteoglicanos/metabolismo , Proteómica , Xilanos/metabolismo
12.
Plant Physiol ; 163(3): 1203-17, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24092888

RESUMEN

The function of a putative galacturonosyltransferase from Arabidopsis (Arabidopsis thaliana; At1g02720; GALACTURONOSYLTRANSFERASE-LIKE5 [AtGATL5]) was studied using a combination of molecular genetic, chemical, and immunological approaches. AtGATL5 is expressed in all plant tissues, with highest expression levels in siliques 7 DPA. Furthermore, its expression is positively regulated by several transcription factors that are known to regulate seed coat mucilage production. AtGATL5 is localized in both endoplasmic reticulum and Golgi, in comparison with marker proteins resident to these subcellular compartments. A transfer DNA insertion in the AtGATL5 gene generates seed coat epidermal cell defects both in mucilage synthesis and cell adhesion. Transformation of atgatl5-1 mutants with the wild-type AtGATL5 gene results in the complementation of all morphological phenotypes. Compositional analyses of the mucilage isolated from the atgatl5-1 mutant demonstrated that galacturonic acid and rhamnose contents are decreased significantly in atgatl5-1 compared with wild-type mucilage. No changes in structure were observed between soluble mucilage isolated from wild-type and mutant seeds, except that the molecular weight of the mutant mucilage increased 63% compared with that of the wild type. These data provide evidence that AtGATL5 might function in the regulation of the final size of the mucilage rhamnogalacturonan I.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mucílago de Planta/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Hexurónicos/metabolismo , Hibridación in Situ , Microscopía Confocal , Microscopía Electrónica de Rastreo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectinas/metabolismo , Mucílago de Planta/análisis , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ramnosa/metabolismo , Semillas/genética , Semillas/ultraestructura , Transcriptoma
13.
Proc Natl Acad Sci U S A ; 108(50): 20225-30, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22135470

RESUMEN

Plant cell wall pectic polysaccharides are arguably the most complex carbohydrates in nature. Progress in understanding pectin synthesis has been slow due to its complex structure and difficulties in purifying and expressing the low-abundance, Golgi membrane-bound pectin biosynthetic enzymes. Arabidopsis galacturonosyltransferase (GAUT) 1 is an α-1,4-galacturonosyltransferase (GalAT) that synthesizes homogalacturonan (HG), the most abundant pectic polysaccharide. We now show that GAUT1 functions in a protein complex with the homologous GAUT7. Surprisingly, although both GAUT1 and GAUT7 are type II membrane proteins with single N-terminal transmembrane-spanning domains, the N-terminal region of GAUT1, including the transmembrane domain, is cleaved in vivo. This raises the question of how the processed GAUT1 is retained in the Golgi, the site of HG biosynthesis. We show that the anchoring of GAUT1 in the Golgi requires association with GAUT7 to form the GAUT1:GAUT7 complex. Proteomics analyses also identified 12 additional proteins that immunoprecipitate with the GAUT1:GAUT7 complex. This study provides conclusive evidence that the GAUT1:GAUT7 complex is the catalytic core of an HG:GalAT complex and that cell wall matrix polysaccharide biosynthesis occurs via protein complexes. The processing of GAUT1 to remove its N-terminal transmembrane domain and its anchoring in the Golgi by association with GAUT7 provides an example of how specific catalytic domains of plant cell wall biosynthetic glycosyltransferases could be assembled into protein complexes to enable the synthesis of the complex and developmentally and environmentally plastic plant cell wall.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Pared Celular/enzimología , Pectinas/metabolismo , Glucuronosiltransferasa , Aparato de Golgi/enzimología , Inmunoprecipitación , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteómica , Especificidad por Sustrato
14.
Cell Surf ; 11: 100121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38405175

RESUMEN

Plant cell wall researchers were asked their view on what the major unanswered questions are in their field. This article summarises the feedback that was received from them in five questions. In this issue you can find equivalent syntheses for researchers working on bacterial, unicellular parasite and fungal systems.

15.
Science ; 382(6671): 648-649, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943905

RESUMEN

A protein-peptide complex generates and stabilizes a cell-wall carbohydrate lattice.


Asunto(s)
Pectinas , Tubo Polínico , Señales de Clasificación de Proteína , Pared Celular/química , Pared Celular/ultraestructura , Tubo Polínico/química , Tubo Polínico/ultraestructura , Arabidopsis , Pectinas/química
16.
Cell Surf ; 9: 100099, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36793376

RESUMEN

O-Acetyl esterification is an important structural and functional feature of pectins present in the cell walls of all land plants. The amount and positions of pectin acetyl substituents varies across plant tissues and stages of development. Plant growth and response to biotic and abiotic stress are known to be significantly influenced by pectin O-acetylation. Gel formation is a key characteristic of pectins, and many studies have shown that gel formation is dependent upon the degree of acetylation. Previous studies have indicated that members of the TRICHOME BIREFRINGENCE-LIKE (TBL) family may play a role in the O-acetylation of pectin, however, biochemical evidence for acceptor specific pectin acetyltransferase activity remains to be confirmed and the exact mechanism(s) for catalysis must be determined. Pectin acetylesterases (PAEs) affect pectin acetylation as they hydrolyze acetylester bonds and have a role in the amount and distribution of O-acetylation. Several mutant studies suggest the critical role of pectin O-acetylation; however, additional research is required to fully understand this. This review aims to discuss the importance, role, and putative mechanism of pectin O-acetylation.

17.
Nat Plants ; 8(11): 1289-1303, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36357524

RESUMEN

Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.


Asunto(s)
Arabidopsis , Pectinas , Polimerizacion , Pectinas/metabolismo , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Polisacáridos/metabolismo
18.
Biotechnol Biofuels Bioprod ; 15(1): 23, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227303

RESUMEN

BACKGROUND: Terrestrial plant biomass is the primary renewable carbon feedstock for enabling transition to a sustainable bioeconomy. Consolidated bioprocessing (CBP) by the cellulolytic thermophile Clostridium thermocellum offers a single step microbial platform for production of biofuels and biochemicals via simultaneous solubilization of carbohydrates from lignocellulosic biomass and conversion to products. Here, solubilization of cell wall cellulosic, hemicellulosic, and pectic polysaccharides in the liquor and solid residues generated during CBP of poplar biomass by C. thermocellum was analyzed. RESULTS: The total amount of biomass solubilized in the C. thermocellum DSM1313 fermentation platform was 5.8, 10.3, and 13.7% of milled non-pretreated poplar after 24, 48, and 120 h, respectively. These results demonstrate solubilization of 24% cellulose and 17% non-cellulosic sugars after 120 h, consistent with prior reports. The net solubilization of non-cellulosic sugars by C. thermocellum (after correcting for the uninoculated control fermentations) was 13 to 36% of arabinose (Ara), xylose (Xyl), galactose (Gal), mannose (Man), and glucose (Glc); and 15% and 3% of fucose and glucuronic acid, respectively. No rhamnose was solubilized and 71% of the galacturonic acid (GalA) was solubilized. These results indicate that C. thermocellum may be selective for the types and/or rate of solubilization of the non-cellulosic wall polymers. Xyl, Man, and Glc were found to accumulate in the fermentation liquor at levels greater than in uninoculated control fermentations, whereas Ara and Gal did not accumulate, suggesting that C. thermocellum solubilizes both hemicelluloses and pectins but utilizes them differently. After five days of fermentation, the relative amount of Rha in the solid residues increased 21% indicating that the Rha-containing polymer rhamnogalacturonan I (RG-I) was not effectively solubilized by C. thermocellum CBP, a result confirmed by immunoassays. Comparison of the sugars in the liquor versus solid residue showed that C. thermocellum solubilized hemicellulosic xylan and mannan, but did not fully utilize them, solubilized and appeared to utilize pectic homogalacturonan, and did not solubilize RG-I. CONCLUSIONS: The significant relative increase in RG-I in poplar solid residues following CBP indicates that C. thermocellum did not solubilize RG-I. These results support the hypothesis that this pectic glycan may be one barrier for efficient solubilization of poplar by C. thermocellum.

20.
Plant Physiol ; 153(4): 1729-46, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20522722

RESUMEN

Carbohydrate-active enzyme glycosyltransferase family 8 (GT8) includes the plant galacturonosyltransferase1-related gene family of proven and putative alpha-galacturonosyltransferase (GAUT) and GAUT-like (GATL) genes. We computationally identified and investigated this family in 15 fully sequenced plant and green algal genomes and in the National Center for Biotechnology Information nonredundant protein database to determine the phylogenetic relatedness of the GAUTs and GATLs to other GT8 family members. The GT8 proteins fall into three well-delineated major classes. In addition to GAUTs and GATLs, known or predicted to be involved in plant cell wall biosynthesis, class I also includes a lower plant-specific GAUT and GATL-related (GATR) subfamily, two metazoan subfamilies, and proteins from other eukaryotes and cyanobacteria. Class II includes galactinol synthases and plant glycogenin-like starch initiation proteins that are not known to be directly involved in cell wall synthesis, as well as proteins from fungi, metazoans, viruses, and bacteria. Class III consists almost entirely of bacterial proteins that are lipooligo/polysaccharide alpha-galactosyltransferases and alpha-glucosyltransferases. Sequence motifs conserved across all GT8 subfamilies and those specific to plant cell wall-related GT8 subfamilies were identified and mapped onto a predicted GAUT1 protein structure. The tertiary structure prediction identified sequence motifs likely to represent key amino acids involved in catalysis, substrate binding, protein-protein interactions, and structural elements required for GAUT1 function. The results show that the GAUTs, GATLs, and GATRs have a different evolutionary origin than other plant GT8 genes, were likely acquired from an ancient cyanobacterium (Synechococcus) progenitor, and separate into unique subclades that may indicate functional specialization.


Asunto(s)
Pared Celular/enzimología , Evolución Molecular , Glicosiltransferasas/metabolismo , Familia de Multigenes , Plantas/genética , Secuencias de Aminoácidos , Secuencia Conservada , Eucariontes/enzimología , Eucariontes/genética , Genes de Plantas , Genoma de Planta , Glicosiltransferasas/genética , Filogenia , Plantas/enzimología , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA