Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 19(1): 68, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305649

RESUMEN

BACKGROUND: Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1ß. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury. METHODS: After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing. RESULTS: In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4-L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1ß. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels. CONCLUSIONS: Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well.


Asunto(s)
Inflamasomas , Traumatismos de los Nervios Periféricos , Humanos , Inflamasomas/metabolismo , Neuronas Motoras/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Nervio Ciático/lesiones
2.
J Appl Toxicol ; 41(3): 387-398, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32830870

RESUMEN

Emerging infectious diseases are major drivers of global and local amphibian biodiversity loss. Therefore, developing effective disinfection methods to manage the impact of diseases in wild and captive "ark" populations are an important goal in amphibian conservation. While chemical disinfectants have been used safely and effectively in larval and adult amphibians infected with pathogenic microbes, their applicability to amphibian egg masses has remained untested. To bridge this gap, we exposed embryos of the common toad (Bufo bufo) and agile frog (Rana dalmatina) experimentally to three widely used disinfectants: voriconazole, chloramphenicol and chlorogen-sesquihydrate. For 3 days we exposed portions of egg masses to these disinfectants at 1×, 2×, 5× and 10× the concentration recommended for the disinfection of tadpoles and adults. Subsequently, we recorded embryonic and larval survival, as well as larval body mass and the incidence of abnormalities 12 days after hatching. Application of voriconazole had species- and concentration-dependent negative impacts on survival and body mass, and caused marked malformations in the viscerocranial structure of B. bufo tadpoles. Exposure to chlorogen-sesquihydrate also resulted in significant mortality in B. bufo embryos and negatively affected body mass of R. dalmatina larvae. Chloramphenicol had little negative effects on embryos or larvae in either species. Based on these results, the application of voriconazole and chlorogen-sesquihydrate cannot be recommended for the disinfection of amphibian eggs, whereas treatment with chloramphenicol appears to be a safe method for eliminating potential pathogens from anuran egg masses and their immediate aquatic environment.


Asunto(s)
Batrachochytrium/crecimiento & desarrollo , Desinfectantes/toxicidad , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Óvulo/efectos de los fármacos , Óvulo/crecimiento & desarrollo , Ranidae/embriología , Animales , Cloranfenicol/toxicidad , Hungría , Voriconazol/toxicidad
3.
Int J Mol Sci ; 22(11)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204159

RESUMEN

By upregulation of cell adhesion molecules and secretion of proinflammatory cytokines, cells of the neurovascular unit, including pericytes and endothelial cells, actively participate in neuroinflammatory reactions. As previously shown, both cell types can activate inflammasomes, cerebral endothelial cells (CECs) through the canonical pathway, while pericytes only through the noncanonical pathway. Using complex in vitro models, we demonstrate here that the noncanonical inflammasome pathway can be induced in CECs as well, leading to a further increase in the secretion of active interleukin-1ß over that observed in response to activation of the canonical pathway. In parallel, a more pronounced disruption of tight junctions takes place. We also show that CECs respond to inflammatory stimuli coming from both the apical/blood and the basolateral/brain directions. As a result, CECs can detect factors secreted by pericytes in which the noncanonical inflammasome pathway is activated and respond with inflammatory activation and impairment of the barrier properties. In addition, upon sensing inflammatory signals, CECs release inflammatory factors toward both the blood and the brain sides. Consequently, CECs activate pericytes by upregulating their expression of NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), an inflammasome-forming pattern recognition receptor. In conclusion, cerebral pericytes and endothelial cells mutually activate each other in inflammation.


Asunto(s)
Encéfalo/patología , Comunicación Celular , Células Endoteliales/patología , Inflamasomas/metabolismo , Pericitos/patología , Transducción de Señal , Animales , Inflamación/metabolismo , Inflamación/patología , Porcinos , Uniones Estrechas/metabolismo
4.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069135

RESUMEN

Triple negative breast cancer presents higher mortality and poorer survival rates than other breast cancer (BC) types, due to the proneness to brain metastases formation, which are usually diagnosed at advanced stages. Therefore, the discovery of BC brain metastases (BCBM) biomarkers appears pivotal for a timely intervention. With this work, we aimed to disclose microRNAs (miRNAs) and extracellular vesicles (EVs) in the circulation as biomarkers of BCBM formation. Using a BCBM animal model, we analyzed EVs in plasma by nanoparticle tracking analysis and ascertained their blood-brain barrier (BBB) origin by flow cytometry. We further evaluated circulating miRNAs by RT-qPCR and their brain expression by in situ hybridization. In parallel, a cellular model of BCBM formation, combining triple negative BC cells and BBB endothelial cells, was used to differentiate the origin of biomarkers. Established metastases were associated with an increased content of circulating EVs, particularly of BBB origin. Interestingly, deregulated miRNAs in the circulation were observed prior to BCBM detection, and their brain origin was suggested by matching alterations in brain parenchyma. In vitro studies indicated that miR-194-5p and miR-205-5p are expressed and released by BC cells, endothelial cells and during their interaction. These results highlight miRNAs and EVs as biomarkers of BCBM in early and advanced stages, respectively.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , MicroARN Circulante/sangre , Vesículas Extracelulares/patología , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Línea Celular Tumoral , MicroARN Circulante/genética , Endotelio Vascular/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , MicroARNs/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Exp Cell Res ; 380(2): 216-233, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039347

RESUMEN

Mucopolysaccharidosis II (MPS II) is a lysosomal storage disorder (LSD), caused by iduronate 2-sulphatase (IDS) enzyme dysfunction. The neuropathology of the disease is not well understood, although the neural symptoms are currently incurable. MPS II-patient derived iPSC lines were established and differentiated to neuronal lineage. The disease phenotype was confirmed by IDS enzyme and glycosaminoglycan assay. MPS II neuronal precursor cells (NPCs) showed significantly decreased self-renewal capacity, while their cortical neuronal differentiation potential was not affected. Major structural alterations in the ER and Golgi complex, accumulation of storage vacuoles, and increased apoptosis were observed both at protein expression and ultrastructural level in the MPS II neuronal cells, which was more pronounced in GFAP + astrocytes, with increased LAMP2 expression but unchanged in their RAB7 compartment. Based on these finding we hypothesize that lysosomal membrane protein (LMP) carrier vesicles have an initiating role in the formation of storage vacuoles leading to impaired lysosomal function. In conclusion, a novel human MPS II disease model was established for the first time which recapitulates the in vitro neuropathology of the disorder, providing novel information on the disease mechanism which allows better understanding of further lysosomal storage disorders and facilitates drug testing and gene therapy approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Mucopolisacaridosis II/metabolismo , Diferenciación Celular , Células Cultivadas , Citometría de Flujo , Humanos , Células Madre Pluripotentes Inducidas/patología , Mucopolisacaridosis II/patología
6.
J Cell Mol Med ; 23(4): 2619-2631, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30712288

RESUMEN

Breast cancer and melanoma are among the most frequent cancer types leading to brain metastases. Despite the unquestionable clinical significance, important aspects of the development of secondary tumours of the central nervous system are largely uncharacterized, including extravasation of metastatic cells through the blood-brain barrier. By using transmission electron microscopy, here we followed interactions of cancer cells and brain endothelial cells during the adhesion, intercalation/incorporation and transendothelial migration steps. We observed that brain endothelial cells were actively involved in the initial phases of the extravasation by extending filopodia-like membrane protrusions towards the tumour cells. Melanoma cells tended to intercalate between endothelial cells and to transmigrate by utilizing the paracellular route. On the other hand, breast cancer cells were frequently incorporated into the endothelium and were able to migrate through the transcellular way from the apical to the basolateral side of brain endothelial cells. When co-culturing melanoma cells with cerebral endothelial cells, we observed N-cadherin enrichment at melanoma-melanoma and melanoma-endothelial cell borders. However, for breast cancer cells N-cadherin proved to be dispensable for the transendothelial migration both in vitro and in vivo. Our results indicate that breast cancer cells are more effective in the transcellular type of migration than melanoma cells.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Corteza Cerebral/patología , Melanoma Experimental/patología , Neoplasias Cutáneas/patología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Expresión Génica , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Trasplante de Neoplasias , Especificidad de Órganos , Cultivo Primario de Células , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Células Tumorales Cultivadas
7.
Neurobiol Dis ; 114: 140-152, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29505813

RESUMEN

Intracellular deposition of pathologically altered α-synuclein mostly in neurons characterises Parkinson's disease (PD), while its accumulation predominantly in oligodendrocytes is a feature of multiple system atrophy (MSA). Recently a prion-like spreading of pathologic α-synuclein has been suggested to play a role in the pathogenesis of PD and MSA. This implicates a role of protein processing systems, including lysosomes, supported also by genetic studies in PD. However, particularly for MSA, the mechanism of cell-to-cell propagation of α-synuclein is yet not fully understood. To evaluate the significance of lysosomal response, we systematically compared differently affected neuronal populations in PD, MSA, and non-diseased brains using morphometric immunohistochemistry (cathepsin D), double immunolabelling (cathepsin D/α-synuclein) laser confocal microscopy, and immunogold electron microscopy for the disease associated α-synuclein. We found that i) irrespective of the presence of neuronal inclusions, the volume density of cathepsin D immunoreactivity significantly increases in affected neurons of the pontine base in MSA brains; ii) volume density of cathepsin D immunoreactivity increases in nigral neurons in PD without inclusions and with non-ubiquitinated pre-aggregates of α-synuclein, but not in neurons with Lewy bodies; iii) cathepsin D immunoreactivity frequently colocalises with α-synuclein pre-aggregates in nigral neurons in PD; iv) ultrastructural observations confirm disease-associated α-synuclein in neuronal and astrocytic lysosomes in PD; v) lysosome-associated α-synuclein is observed in astroglia and rarely in oligodendroglia and in neurons in MSA. Our observations support a crucial role for the neuronal endosomal-lysosomal system in the processing of α-synuclein in PD. We suggest a distinct contribution of lysosomes to the pathogenesis of MSA, including the possibility of oligodendroglial and eventually neuronal uptake of exogenous α-synuclein in MSA.


Asunto(s)
Lisosomas/metabolismo , Lisosomas/patología , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Lisosomas/ultraestructura , Masculino , Persona de Mediana Edad , Puente/metabolismo , Puente/patología , Puente/ultraestructura
8.
Brain Behav Immun ; 64: 220-231, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28432035

RESUMEN

Cerebral pericytes are mural cells embedded in the basement membrane of capillaries. Increasing evidence suggests that they play important role in controlling neurovascular functions, i.e. cerebral blood flow, angiogenesis and permeability of the blood-brain barrier. These cells can also influence neuroinflammation which is highly regulated by the innate immune system. Therefore, we systematically tested the pattern recognition receptor expression of brain pericytes. We detected expression of NOD1, NOD2, NLRC5, NLRP1-3, NLRP5, NLRP9, NLRP10 and NLRX mRNA in non-treated cells. Among the ten known human TLRs, TLR2, TLR4, TLR5, TLR6 and TLR10 were found to be expressed. Inflammatory mediators induced the expression of NLRA, NLRC4 and TLR9 and increased the levels of NOD2, TLR2, inflammasome-forming caspases and inflammasome-cleaved interleukins. Oxidative stress, on the other hand, upregulated expression of TLR10 and NLRP9. Activation of selected pattern recognition receptors can lead to inflammasome assembly and caspase-dependent secretion of IL-1ß. TNF-α and IFN-γ increased the levels of pro-IL-1ß and pro-caspase-1 proteins; however, no canonical activation of NLRP1, NLRP2, NLRP3 or NLRC4 inflammasomes could be observed in human brain vascular pericytes. On the other hand, we could demonstrate secretion of active IL-1ß in response to non-canonical inflammasome activation, i.e. intracellular LPS or infection with E. coli bacteria. Our in vitro results indicate that pericytes might have an important regulatory role in neuroinflammation.


Asunto(s)
Encéfalo/metabolismo , Inflamasomas/metabolismo , Pericitos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/metabolismo , Transducción de Señal
9.
Neurobiol Dis ; 69: 76-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24878508

RESUMEN

Dementia with Lewy bodies (DLB), Parkinson's disease (PD) and multiple system atrophy are characterized by the deposition of disease-associated α-synuclein. In the present study we 1) examined the molecular specificity of the novel anti-α-synuclein 5G4 antibody; 2) evaluated immunoreactivity patterns and their correlation in human brain tissue with micro- and astrogliosis in 57 cases with PD or DLB; and 3) performed a systematic immunoelectron microscopical mapping of subcellular localizations. 5G4 strongly binds to the high molecular weight fraction of ß-sheet rich oligomers, while no binding to primarily disordered oligomers or monomers was observed. We show novel localizations of disease-associated α-synuclein including perivascular macrophages, ependyma and cranial nerves. α-Synuclein immunoreactive neuropil dots and thin threads associate more with glial reaction than Lewy bodies alone. Astrocytic α-synuclein is an important component of the pathology. Furthermore, we document ultrastructurally the pathway of processing of disease-associated α-synuclein within neurons and astroglial cells. Interaction of mitochondria and disease-associated α-synuclein plays a key role in the molecular-structural cytopathogenesis of disorders with Lewy bodies. We conclude that 1) the 5G4 antibody has strong selectivity for ß-sheet rich α-synuclein oligomers; 2) Lewy bodies themselves are not the most relevant morphological substrate that evokes tissue lesioning; 3) both neurons and astrocytes internalize disease-associated α-synuclein in the human brain, suggesting prion-like cell-to-cell spread of α-synuclein by uptake from surrounding structures, as shown previously in experimental observations.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Espacio Intracelular/metabolismo , Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Anticuerpos/metabolismo , Espacio Extracelular/metabolismo , Femenino , Gliosis/metabolismo , Humanos , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Masculino , Microglía/metabolismo , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Estructura Secundaria de Proteína , alfa-Sinucleína/genética , alfa-Sinucleína/inmunología
10.
Colloids Surf B Biointerfaces ; 234: 113751, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241889

RESUMEN

Most of the malignancies detected within the brain parenchyma are of metastatic origin. As the brain lacks classical lymphatic circulation, the primary way for metastasis relies on hematogenous routes. Dissemination of metastatic cells to the brain implies attachment to the luminal surface of brain endothelial cells, transmigration through the vessel wall, and adhesion to the brain surface of the vasculature. During this process, tumor cells must interact with brain endothelial cells and later on with pericytes. Physical interaction between tumor cells and brain vascular cells might be crucial in the successful extravasation of metastatic cells through blood vessels and later in their survival within the brain environment. Therefore, we applied single-cell force spectroscopy to investigate the nanoscale adhesive properties of living breast adenocarcinoma cells to brain endothelial cells and pericytes. We found target cell type-dependent adhesion characteristics, i.e. increased adhesion of the tumor cells to pericytes in comparison to endothelial cells, which underlines the existence of metastatic potential-related nanomechanical differences relying partly on membrane tether dynamics. Varying adhesion strength of the tumor cells to different cell types of brain vessels presumably reflects the transitory adhesion to endothelial cells before extravasation and the long-lasting strong interaction with pericytes during survival and proliferation in the brain. Our results highlight the importance of specific mechanical interactions between tumor cells and host cells during metastasis formation.


Asunto(s)
Adenocarcinoma , Células Endoteliales , Humanos , Pericitos , Encéfalo/patología , Endotelio , Adenocarcinoma/metabolismo
11.
ACS Appl Bio Mater ; 6(1): 64-73, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36239448

RESUMEN

Functionalized nanoparticles (NPs) are widely used in targeted drug delivery and biomedical imaging due to their penetration into living cells. The outer coating of most cells is a sugar-rich layer of the cellular glycocalyx, presumably playing an important part in any uptake processes. However, the exact role of the cellular glycocalyx in NP uptake is still uncovered. Here, we in situ monitored the cellular uptake of gold NPs─functionalized with positively charged alkaline thiol (TMA)─into adhered cancer cells with or without preliminary glycocalyx digestion. Proteoglycan (PG) components of the glycocalyx were treated by the chondroitinase ABC enzyme. It acts on chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate and slowly on hyaluronate. The uptake measurements of HeLa cells were performed by applying a high-throughput label-free optical biosensor based on resonant waveguide gratings. The positively charged gold NPs were used with different sizes [d = 2.6, 4.2, and 7.0 nm, small (S), medium (M), and large(L), respectively]. Negatively charged citrate-capped tannic acid (CTA, d = 5.5 nm) NPs were also used in control experiments. Real-time biosensor data confirmed the cellular uptake of the functionalized NPs, which was visually proved by transmission electron microscopy. It was found that the enzymatic digestion facilitated the entry of the positively charged S- and M-sized NPs, being more pronounced for the M-sized. Other enzymes digesting different components of the glycocalyx were also employed, and the results were compared. Glycosaminoglycan digesting heparinase III treatment also increased, while glycoprotein and glycolipid modifying neuraminidase decreased the NP uptake by HeLa cells. This suggests that the sialic acid residues increase, while heparan sulfate decreases the uptake of positively charged NPs. Our results raise the hypothesis that cellular uptake of 2-4 nm positively charged NPs is facilitated by glycoprotein and glycolipid components of the glycocalyx but inhibited by PGs.


Asunto(s)
Glicocálix , Nanopartículas del Metal , Humanos , Oro/química , Células HeLa , Nanopartículas del Metal/química , Glicosaminoglicanos , Sulfatos de Condroitina
12.
Sci Rep ; 13(1): 4155, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914729

RESUMEN

Regular monitoring of children's nutritional status is essential to prevent micronutrient deficiencies, nutritional status abnormalities as stunting, wasting, overweight and obesity. Nutritional status assessment is usually performed by paediatricians by using anthropometry (body mass index, weight to height indices) and/or by body fat-mass measurement (bioimpedance analysis, dual-energy x-ray absorptiometry, computer tomography, etc.). Parents are also interested in but usually fail to evaluate their child's nutritional status. To help the sufficient collaboration between the physician and parents a new nutritional status monitoring method is developed for families. The new monitoring system was developed under a paediatrician's supervision by considering national and international recommendations, references as well as the anthropometric measurement possibilities at home. The model requires age, sex, body mass, height, waist circumference and hand circumference as predictor (input) variables of nutritional status, while (1) the centile values of the measured body dimensions, (2) body fat percentage and the centile of body fat percentage, (3) the nutritional status category (undernutrition, normal nutritional status, overfat/obese) can be predicted (outcome variables) by the new method. The predictive accuracy of the model for nutritional status category was 94.88% in boys and 98.66% in girls. The new model was developed for nutritional status assessment in school-aged children and will be incorporated in the healthy lifestyle module of 'Teenage Survival Guide' educational package to be developed by the Health Promotion and Education Research Team, Hungarian Academy of Sciences, Hungary. The new monitoring system could help the families to identify the early signs of malnutrition in children. Nutritional status assessment in children at home is suggested twice a year, and in case of suspicious nutritional status abnormality it is recommended to visit the general practitioner.


Asunto(s)
Desnutrición , Estado Nutricional , Masculino , Femenino , Adolescente , Humanos , Niño , Obesidad , Índice de Masa Corporal , Evaluación Nutricional , Antropometría
13.
Sci Rep ; 13(1): 18638, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903868

RESUMEN

The purpose of the analysis was to identify the risk and protective factors for health behaviour in European adolescents from population health status and expenditure, mental health status, sexual life, social life and education indices and the existence of national strategies, programmes. National and international databases providing information on the presumed health behaviour predictors were used in the analysis. The existence of national health strategies, the level of health expenditure, the socioeconomic conditions, the level of education and literacy had significant influence on the health-risk behaviour of adolescents in the European societies. Six clusters of European countries were extracted by considering the health behaviour risks and health protection strategies. National health strategies combined with governmental support for health prevention and action plans have the most effective impact on the health-risk behaviour of adolescents.


Asunto(s)
Conductas Relacionadas con la Salud , Estado de Salud , Humanos , Adolescente , Factores Protectores , Europa (Continente) , Escolaridad , Factores de Riesgo
14.
Acta Neuropathol Commun ; 11(1): 155, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749707

RESUMEN

Inflammasomes, primarily responsible for the activation of IL-1ß, have emerged as critical regulators of the tumor microenvironment. By using in vivo and in vitro brain metastasis models, as well as human samples to study the role of the NLRP3 inflammasome in triple-negative breast cancer (TNBC) brain metastases, we found NLRP3 inflammasome components and IL-1ß to be highly and specifically expressed in peritumoral astrocytes. Soluble factors from TNBC cells induced upregulation and activation of NLRP3 and IL-1ß in astrocytes, while astrocyte-derived mediators augmented the proliferation of metastatic cells. In addition, inhibition of NLRP3 inflammasome activity using MCC950 or dampening the downstream effect of IL-1ß prevented the proliferation increase in cancer cells. In vivo, MCC950 reduced IL-1ß expression in peritumoral astrocytes, as well as the levels of inflammasome components and active IL-1ß. Most importantly, significantly retarded growth of brain metastatic tumors was observed in mice treated with MCC950. Overall, astrocytes contribute to TNBC progression in the brain through activation of the NLRP3 inflammasome and consequent IL-1ß release. We conclude that pharmacological targeting of inflammasomes may become a novel strategy in controlling brain metastatic diseases.


Asunto(s)
Neoplasias Encefálicas , Indenos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Inflamasomas , Astrocitos , Proteína con Dominio Pirina 3 de la Familia NLR , Sulfonamidas/farmacología , Microambiente Tumoral
15.
Front Physiol ; 14: 1173636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664431

RESUMEN

The interaction between the gut and brain is a great puzzle since it is mediated by very complex mechanisms. Therefore, the possible interactions of the brain-exercise-intestine-microbiome axis were investigated in a control (C, N = 6) and voluntarily exercised (VE, N = 8) middle-aged rats. The endurance capacity was assessed by VO2max on the treadmill, spatial memory by the Morris maze test, gastrointestinal motility by EMG, the microbiome by 16S RNA gene amplicon sequencing, caveolae by electron microscopy, and biochemical assays were used to measure protein levels and production of reactive oxygen species (ROS). Eight weeks of voluntary running increased VO2max, and spatial memory was assessed by the Morris maze test but did not significantly change the motility of the gastrointestinal tract or production of ROS in the intestine. The protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) protein levels significantly increased in the intestine, while peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NFR1), SIRT1, SIRT3, nicotinamide phosphoribosyl transferase (NAMPT), and nuclear factor κB (NF-κB) did not change. On the other hand, voluntary exercise increased the number of caveolae in the smooth muscles of the intestine and relative abundance of Bifidobacteria in the microbiome, which correlated with the Akt levels in the intestine. Voluntary exercise has systemic effects and the relationship between intestinal Akt and the microbiome of the gastrointestinal tract could be an important adaptive response.

16.
Acta Neuropathol ; 124(4): 583-91, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22392442

RESUMEN

Hereditary spastic paraplegia (HSP) comprises a group of clinically and genetically heterogeneous disorders associated with spastic paraparesis (pure HSP) with or without additional neurological symptoms (complicated HSP). Here we present a case of an adult-onset, apparently autosomal-dominant, complicated form of HSP. Onset of clinical symptoms was at the age 40 years and characterised by slowly progressive corticospinal tract dysfunction, dysarthria, disorientation, extrapyramidal symptoms, and bilateral ptosis. Cranial MRI revealed hyperintensities on T2-weighted sequences mostly in the posterior limb of the internal capsule. The proband deceased at the age of 64 years. As morphological substrate for the slowly progressive clinical symptoms, comprehensive neuropathological and ultrastructural evaluation revealed a novel oligodendrogliopathy with distinctive, partly ubiquitinated and p62 positive fibrillar inclusions evolving into crystalloid deposits, containing elements of the oligodendroglial cytoskeleton (α- and ß-tubulin, TPPP/p25). In the central nervous system, accumulation of crystalloid structures has been related to histiocytes but not to glial cells. This study has implications for the understanding on how the human central nervous system reacts to protracted dysfunction and disruption of the oligodendroglial cytoskeleton, including development of crystalloid structures, which have not yet been reported in neurodegenerative diseases including HSP.


Asunto(s)
Encéfalo/ultraestructura , Oligodendroglía/ultraestructura , Paraplejía Espástica Hereditaria/patología , Médula Espinal/ultraestructura , Adulto , Edad de Inicio , Encéfalo/metabolismo , Cristalización , Resultado Fatal , Humanos , Inmunohistoquímica , Cuerpos de Inclusión/ultraestructura , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Paraplejía Espástica Hereditaria/fisiopatología , Médula Espinal/metabolismo
17.
Biol Futur ; 73(1): 31-42, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34837645

RESUMEN

Lysosome (L), a hydrolytic compartment of the endo-lysosomal system (ELS), plays a central role in the metabolic regulation of eukaryotic cells. Furthermore, it has a central role in the cytopathology of several diseases, primarily in lysosomal storage diseases (LSDs). Mucopolysaccharidosis II (MPS II, Hunter disease) is a rare LSD caused by idunorate-2-sulphatase (IDS) enzyme deficiency. To provide a new platform for drug development and clarifying the background of the clinically observed cytopathology, we established a human in vitro model, which recapitulates all cellular hallmarks of the disease. Some of our results query the traditional concept by which the storage vacuoles originate from the endosomal system and suggest a new concept, in which endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and RAB2/LAMP positive Golgi (G) vesicles play an initiative role in the vesicle formation. In this hypothesis, Golgi is not only an indirectly affected organelle but enforced to be the main support of vacuole formation. The purposes of this minireview are to give a simple guide for understanding the main relationships in ELS, to present the storage vacuoles and their relation to ELS compartments, to recommend an alternative model for vacuole formation, and to place the Golgi in spotlight of MPS II cytopathology.


Asunto(s)
Mucopolisacaridosis II , Endocitosis , Aparato de Golgi/metabolismo , Humanos , Lisosomas/metabolismo , Mucopolisacaridosis II/metabolismo , Vacuolas/metabolismo
18.
PLoS One ; 17(4): e0266782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35468161

RESUMEN

INTRODUCTION: Beyond the three-dimensional fibrin network, the mechanical and lytic stability of thrombi is supported by the matrix of neutrophil extracellular traps (NETs) composed of polyanionic DNA meshwork with attached proteins including polycationic histones. Polyphosphates represent another type of polyanions, which in their linear form are known to enhance the fibrin stabilizing effects of DNA and histones. However, in vivo polyphosphates are also present in the form of nanoparticles (PolyP-NP), the interference of which with the fibrin/NET matrix is poorly characterized. AIMS: To compare the effects of linear and nanoparticulate polyphosphates, and their combinations with relevant NET components (DNA, histone H3) on fibrin formation, structure, and lysis in in vitro assays focusing on histone-polyphosphate interactions. METHODS: Transmission electron microscopy and dynamic light scattering for stability of the PolyP-NP preparations. Turbidimetry for kinetics of fibrinogen clotting by thrombin and fibrin dissolution by tissue-type plasminogen activator/plasminogen. Scanning electron microscopy for fibrin structure. Surface plasmon resonance for strength of histone-PolyP interactions. RESULTS: Both linear PolyP and PolyP-NP accelerated the fibrin formation and slowed down its dissolution and these effects were strongly dependent on the number of individual PolyP particles and not on their size. Addition of DNA did not modify significantly the PolyP-NP effects on fibrin formation and lysis. Both linear and nanoparticulate PolyP counteracted the effect of histone in the acceleration of fibrinogen clotting by thrombin. PolyP-NP, but not linear PolyP enhanced the prolongation of lysis time in fibrin containing histone and caused more pronounced thickening of the fibrin fibers than the linear form. Finally, PolyP-NP bound weaker to histone than the linear form. CONCLUSIONS: The interaction of PolyP with histone was a stronger modulator of fibrin formation and lysis than its interaction with DNA. In addition, the PolyP nanoparticles enhanced the thrombus stabilizing effects of histone more effectively than linear PolyP.


Asunto(s)
Nanopartículas , Trombosis , ADN , Fibrina/metabolismo , Fibrinógeno/metabolismo , Histonas , Humanos , Polifosfatos/metabolismo , Trombina/metabolismo , Trombosis/metabolismo
19.
Front Biosci (Landmark Ed) ; 27(9): 265, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36224022

RESUMEN

BACKGROUND: Earlier studies reported alterations of the kynurenine (KYN) pathway of tryptophan (TRP) metabolism in Parkinson's disease (PD). The first rate-limiting enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan dioxygenase were observed upregulated, resulting elevated KYN/TRP ratios in the serum and cerebrospinal fluid samples of patients with PD. More and more single nucleotide polymorphisms (SNPs) have been identified in a population of PD. However, little is known about the impact of genetic variations of the IDO on the pathogenesis of PD. METHODS: SNP analysis of IDO1 was performed by allelic discrimination assay with fluorescently labelled TaqMan probes and a subgroup analysis was conducted according to the age of PD onset. The frame shifts variant rs34155785, intronic variant rs7820268, and promotor region variant rs9657182 SNPs of 105 PD patients without comorbidity were analyzed and compared to 129 healthy controls. RESULTS: No significant correlation was found in three SNPs between PD patients and healthy controls. However, the subgroup analysis revealed that A alleles of rs7820268 SNP or rs9657182 SNP carriers contribute to later onset of PD than non-carriers. CONCLUSIONS: The study suggested that SNPs of IDO1 influenced the age onset of PD and genotyping of SNPs in certain alleles potentially serves as a risk biomarker of PD.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina , Enfermedad de Parkinson , Biomarcadores , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/genética , Quinurenina/metabolismo , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Triptófano/genética , Triptófano/metabolismo
20.
Cancers (Basel) ; 14(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36010906

RESUMEN

Nowadays, extracellular vesicles (EVs) raise a great interest as they are implicated in intercellular communication between cancer and stromal cells. Our aim was to understand how vesicular NME1 and NME2 released by breast cancer cells influence the tumour microenvironment. As a model, we used human invasive breast carcinoma cells overexpressing NME1 or NME2, and first analysed in detail the presence of both isoforms in EV subtypes by capillary Western immunoassay (WES) and immunoelectron microscopy. Data obtained by both methods showed that NME1 was present in medium-sized EVs or microvesicles, whereas NME2 was abundant in both microvesicles and small-sized EVs or exosomes. Next, human skin-derived fibroblasts were treated with NME1 or NME2 containing EVs, and subsequently mRNA expression changes in fibroblasts were examined. RNAseq results showed that the expression of fatty acid and cholesterol metabolism-related genes was decreased significantly in response to NME1 or NME2 containing EV treatment. We found that FASN (fatty acid synthase) and ACSS2 (acyl-coenzyme A synthetase short-chain family member 2), related to fatty acid synthesis and oxidation, were underexpressed in NME1/2-EV-treated fibroblasts. Our data show an emerging link between NME-containing EVs and regulation of tumour metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA