Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 17(1): 50, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234833

RESUMEN

BACKGROUND: Identification of imprinted genes, demonstrating a consistent preference towards the paternal or maternal allelic expression, is important for the understanding of gene expression regulation during embryonic development and of the molecular basis of developmental disorders with a parent-of-origin effect. Combining allelic analysis of RNA-Seq data with phased genotypes in family trios provides a powerful method to detect parent-of-origin biases in gene expression. RESULTS: We report findings in 296 family trios from two large studies: 165 lymphoblastoid cell lines from the 1000 Genomes Project and 131 blood samples from the Genome of the Netherlands (GoNL) participants. Based on parental haplotypes, we identified > 2.8 million transcribed heterozygous SNVs phased for parental origin and developed a robust statistical framework for measuring allelic expression. We identified a total of 45 imprinted genes and one imprinted unannotated transcript, including multiple imprinted transcripts showing incomplete parental expression bias that was located adjacent to strongly imprinted genes. For example, PXDC1, a gene which lies adjacent to the paternally expressed gene FAM50B, shows a 2:1 paternal expression bias. Other imprinted genes had promoter regions that coincide with sites of parentally biased DNA methylation identified in the blood from uniparental disomy (UPD) samples, thus providing independent validation of our results. Using the stranded nature of the RNA-Seq data in lymphoblastoid cell lines, we identified multiple loci with overlapping sense/antisense transcripts, of which one is expressed paternally and the other maternally. Using a sliding window approach, we searched for imprinted expression across the entire genome, identifying a novel imprinted putative lncRNA in 13q21.2. Overall, we identified 7 transcripts showing parental bias in gene expression which were not reported in 4 other recent RNA-Seq studies of imprinting. CONCLUSIONS: Our methods and data provide a robust and high-resolution map of imprinted gene expression in the human genome.


Asunto(s)
Alelos , Expresión Génica/genética , Impresión Genómica/genética , Haplotipos/genética , Análisis Químico de la Sangre , Línea Celular , Humanos , Análisis de Secuencia de ARN
2.
Am J Hum Genet ; 96(4): 532-42, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25772935

RESUMEN

Venous thromboembolism (VTE), the third leading cause of cardiovascular mortality, is a complex thrombotic disorder with environmental and genetic determinants. Although several genetic variants have been found associated with VTE, they explain a minor proportion of VTE risk in cases. We undertook a meta-analysis of genome-wide association studies (GWASs) to identify additional VTE susceptibility genes. Twelve GWASs totaling 7,507 VTE case subjects and 52,632 control subjects formed our discovery stage where 6,751,884 SNPs were tested for association with VTE. Nine loci reached the genome-wide significance level of 5 × 10(-8) including six already known to associate with VTE (ABO, F2, F5, F11, FGG, and PROCR) and three unsuspected loci. SNPs mapping to these latter were selected for replication in three independent case-control studies totaling 3,009 VTE-affected individuals and 2,586 control subjects. This strategy led to the identification and replication of two VTE-associated loci, TSPAN15 and SLC44A2, with lead risk alleles associated with odds ratio for disease of 1.31 (p = 1.67 × 10(-16)) and 1.21 (p = 2.75 × 10(-15)), respectively. The lead SNP at the TSPAN15 locus is the intronic rs78707713 and the lead SLC44A2 SNP is the non-synonymous rs2288904 previously shown to associate with transfusion-related acute lung injury. We further showed that these two variants did not associate with known hemostatic plasma markers. TSPAN15 and SLC44A2 do not belong to conventional pathways for thrombosis and have not been associated to other cardiovascular diseases nor related quantitative biomarkers. Our findings uncovered unexpected actors of VTE etiology and pave the way for novel mechanistic concepts of VTE pathophysiology.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Tetraspaninas/genética , Tromboembolia Venosa/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Oportunidad Relativa
3.
Am J Med Genet B Neuropsychiatr Genet ; 159B(5): 519-28, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22573416

RESUMEN

Although many genetic association studies have been carried out, it remains unclear which genes contribute to depression. This may be due to heterogeneity of the DSM-IV category of depression. Specific symptom-dimensions provide a more homogenous phenotype. Furthermore, as effects of individual genes are small, analysis of genetic data at the pathway-level provides more power to detect associations and yield valuable biological insight. In 1,398 individuals with a Major Depressive Disorder, the symptom dimensions of the tripartite model of anxiety and depression, General Distress, Anhedonic Depression, and Anxious Arousal, were measured with the Mood and Anxiety Symptoms Questionnaire (30-item Dutch adaptation; MASQ-D30). Association of these symptom dimensions with candidate gene sets and gene sets from two public pathway databases was tested using the Global test. One pathway was associated with General Distress, and concerned molecules expressed in the endoplasmatic reticulum lumen. Seven pathways were associated with Anhedonic Depression. Important themes were neurodevelopment, neurodegeneration, and cytoskeleton. Furthermore, three gene sets associated with Anxious Arousal regarded development, morphology, and genetic recombination. The individual pathways explained up to 1.7% of the variance. These data demonstrate mechanisms that influence the specific dimensions. Moreover, they show the value of using dimensional phenotypes on one hand and gene sets on the other hand.


Asunto(s)
Ansiedad/genética , Depresión/genética , Redes Reguladoras de Genes/genética , Estudios de Asociación Genética , Adulto , Epigénesis Genética , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
4.
Genome Med ; 13(1): 45, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761980

RESUMEN

BACKGROUND: Drawing genotype-to-phenotype maps in tumors is of paramount importance for understanding tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature B cells that continuously acquire mutations in parallel in the exome and in B cell receptor loci, presents a unique opportunity to join exome-derived mutations with B cell receptor sequences as independent sources of evidence for clonal evolution. METHODS: Here, we propose CACTUS, a probabilistic model that leverages the information from an independent genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given imperfect genotypes of tumor clones. RESULTS: We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole exome, single-cell RNA, and B cell receptor sequencing. CACTUS outperforms a predecessor model by confidently assigning cells and B cell receptor-based clusters to the tumor clones. CONCLUSIONS: The integration of independent measurements increases model certainty and is the key to improving model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted therapies. CACTUS is written in R and source code, along with all supporting files, are available on GitHub ( https://github.com/LUMC/CACTUS ).


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Neoplasias/genética , Análisis de la Célula Individual , Programas Informáticos , Células Clonales , Análisis por Conglomerados , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma Folicular/genética , Modelos Estadísticos , Reproducibilidad de los Resultados , Secuenciación del Exoma
5.
Front Immunol ; 11: 659, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362897

RESUMEN

Patients undergoing allogeneic stem cell transplantation as treatment for hematological diseases face the risk of Graft-versus-Host Disease as well as relapse. Graft-versus-Host Disease and the favorable Graft-versus-Leukemia effect are mediated by donor T cells recognizing polymorphic peptides, which are presented on the cell surface by HLA molecules and result from single nucleotide polymorphism alleles that are disparate between patient and donor. Identification of polymorphic HLA-binding peptides, designated minor histocompatibility antigens, has been a laborious procedure, and the number and scope for broad clinical use of these antigens therefore remain limited. Here, we present an optimized whole genome association approach for discovery of HLA class I minor histocompatibility antigens. T cell clones isolated from patients who responded to donor lymphocyte infusions after HLA-matched allogeneic stem cell transplantation were tested against a panel of 191 EBV-transformed B cells, which have been sequenced by the 1000 Genomes Project and selected for expression of seven common HLA class I alleles (HLA-A∗01:01, A∗02:01, A∗03:01, B∗07:02, B∗08:01, C∗07:01, and C∗07:02). By including all polymorphisms with minor allele frequencies above 0.01, we demonstrated that the new approach allows direct discovery of minor histocompatibility antigens as exemplified by seven new antigens in eight different HLA class I alleles including one antigen in HLA-A∗24:02 and HLA-A∗23:01, for which the method has not been originally designed. Our new whole genome association strategy is expected to rapidly augment the repertoire of HLA class I-restricted minor histocompatibility antigens that will become available for donor selection and clinical use to predict, follow or manipulate Graft-versus-Leukemia effect and Graft-versus-Host Disease after allogeneic stem cell transplantation.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Efecto Injerto vs Leucemia/inmunología , Antígenos de Histocompatibilidad Menor/metabolismo , Trasplante de Células Madre , Linfocitos T/inmunología , Alelos , Células Clonales , Estudio de Asociación del Genoma Completo , Enfermedad Injerto contra Huésped/genética , Efecto Injerto vs Leucemia/genética , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Polimorfismo de Nucleótido Simple , Unión Proteica , Trasplante Homólogo
6.
Eur J Hum Genet ; 27(3): 455-465, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552425

RESUMEN

X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants.


Asunto(s)
Población/genética , Inactivación del Cromosoma X , Proteínas de Unión al Calcio/genética , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Glicoproteínas de Membrana/genética , Países Bajos , Polimorfismo de Nucleótido Simple , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/genética , Septinas/genética
7.
Nat Commun ; 5: 5592, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25424739

RESUMEN

Periconceptional diet may persistently influence DNA methylation levels with phenotypic consequences. However, a comprehensive assessment of the characteristics of prenatal malnutrition-associated differentially methylated regions (P-DMRs) is lacking in humans. Here we report on a genome-scale analysis of differential DNA methylation in whole blood after periconceptional exposure to famine during the Dutch Hunger Winter. We show that P-DMRs preferentially occur at regulatory regions, are characterized by intermediate levels of DNA methylation and map to genes enriched for differential expression during early development. Validation and further exploratory analysis of six P-DMRs highlight the critical role of gestational timing. Interestingly, differential methylation of the P-DMRs extends along pathways related to growth and metabolism. P-DMRs located in INSR and CPT1A have enhancer activity in vitro and differential methylation is associated with birth weight and serum LDL cholesterol. Epigenetic modulation of pathways by prenatal malnutrition may promote an adverse metabolic phenotype in later life.


Asunto(s)
Antígenos CD/metabolismo , Metilación de ADN , Desarrollo Fetal , Trastornos Nutricionales en el Feto/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptor de Insulina/metabolismo , Inanición , Antígenos CD/genética , Peso al Nacer , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Epigénesis Genética , Femenino , Trastornos Nutricionales en el Feto/genética , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Países Bajos , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Receptor de Insulina/genética
8.
Age (Dordr) ; 35(1): 235-49, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22113349

RESUMEN

In genome-wide association studies (GWAS) of complex traits, single SNP analysis is still the most applied approach. However, the identified SNPs have small effects and provide limited biological insight. A more appropriate approach to interpret GWAS data of complex traits is to analyze the combined effect of a SNP set grouped per pathway or gene region. We used this approach to study the joint effect on human longevity of genetic variation in two candidate pathways, the insulin/insulin-like growth factor (IGF-1) signaling (IIS) pathway and the telomere maintenance (TM) pathway. For the analyses, we used genotyped GWAS data of 403 unrelated nonagenarians from long-lived sibships collected in the Leiden Longevity Study and 1,670 younger population controls. We analyzed 1,021 SNPs in 68 IIS pathway genes and 88 SNPs in 13 TM pathway genes using four self-contained pathway tests (PLINK set-based test, Global test, GRASS and SNP ratio test). Although we observed small differences between the results of the different pathway tests, they showed consistent significant association of the IIS and TM pathway SNP sets with longevity. Analysis of gene SNP sets from these pathways indicates that the association of the IIS pathway is scattered over several genes (AKT1, AKT3, FOXO4, IGF2, INS, PIK3CA, SGK, SGK2, and YWHAG), while the association of the TM pathway seems to be mainly determined by one gene (POT1). In conclusion, this study shows that genetic variation in genes involved in the IIS and TM pathways is associated with human longevity.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/genética , Insulina/metabolismo , Longevidad/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Insulina/genética , Masculino , Persona de Mediana Edad , Transducción de Señal/genética , Telómero
10.
Genome Res ; 13(9): 1998-2004, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12915492

RESUMEN

The chromosomal gene expression profiles established by the Human Transcriptome Map (HTM) revealed a clustering of highly expressed genes in about 30 domains, called ridges. To physically characterize ridges, we constructed a new HTM based on the draft human genome sequence (HTMseq). Expression of 25,003 genes can be analyzed online in a multitude of tissues (http://bioinfo.amc.uva.nl/HTMseq). Ridges are found to be very gene-dense domains with a high GC content, a high SINE repeat density, and a low LINE repeat density. Genes in ridges have significantly shorter introns than genes outside of ridges. The HTMseq also identifies a significant clustering of weakly expressed genes in domains with fully opposite characteristics (antiridges). Both types of domains are open to tissue-specific expression regulation, but the maximal expression levels in ridges are considerably higher than in antiridges. Ridges are therefore an integral part of a higher order structure in the genome related to transcriptional regulation.


Asunto(s)
Secuencia Rica en GC/genética , Regulación de la Expresión Génica , Genes , Intrones , Mapeo Físico de Cromosoma , Secuencias Repetitivas de Ácidos Nucleicos , Transcripción Genética , Composición de Base , Codón , Biología Computacional/métodos , Humanos , Familia de Multigenes , Especificidad de Órganos/genética , Elementos de Nucleótido Esparcido Corto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA