Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mar Drugs ; 19(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34940653

RESUMEN

The peculiarities of the survival and adaptation of deep-sea organisms raise interest in the study of their metabolites as promising drugs. In this work, the hemolytic, cytotoxic, antimicrobial, and enzyme-inhibitory activities of tentacle extracts from five species of sea anemones (Cnidaria, orders Actiniaria and Corallimorpharia) collected near the Kuril and Commander Islands of the Far East of Russia were evaluated for the first time. The extracts of Liponema brevicorne and Actinostola callosa demonstrated maximal hemolytic activity, while high cytotoxic activity against murine splenocytes and Ehrlich carcinoma cells was found in the extract of Actinostola faeculenta. The extracts of Corallimorphus cf. pilatus demonstrated the greatest activity against Ehrlich carcinoma cells but were not toxic to mouse spleen cells. Sea anemones C. cf. pilatus and Stomphia coccinea are promising sources of antimicrobial and antifungal compounds, being active against Gram-positive bacteria Bacillus subtilis, Staphylococcus aureus, and yeast Candida albicans. Moreover, all sea anemones contain α-galactosidase inhibitors. Peptide mass fingerprinting of L. brevicorne and C. cf. pilatus extracts provided a wide range of peptides, predominantly with molecular masses of 4000-5900 Da, which may belong to a known or new structural class of toxins. The obtained data allow concluding that deep-sea anemones are a promising source of compounds for drug discovery.


Asunto(s)
Anémonas de Mar , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Organismos Acuáticos , Candida albicans/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Descubrimiento de Drogas , Bacterias Grampositivas/efectos de los fármacos , Toxinas Marinas/química , Federación de Rusia
2.
Mar Drugs ; 17(10)2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31546678

RESUMEN

Sea anemones' venom is rich in peptides acting on different biological targets, mainly on cytoplasmic membranes and ion channels. These animals are also a source of pancreatic α-amylase inhibitors, which have the ability to control the glucose level in the blood and can be used for the treatment of prediabetes and type 2 diabetes mellitus. Recently we have isolated and characterized magnificamide (44 aa, 4770 Da), the major α-amylase inhibitor of the sea anemone Heteractis magnifica mucus, which shares 84% sequence identity with helianthamide from Stichodactyla helianthus. Herein, we report some features in the action of a recombinant analog of magnificamide. The recombinant peptide inhibits porcine pancreatic and human saliva α-amylases with Ki's equal to 0.17 ± 0.06 nM and 7.7 ± 1.5 nM, respectively, and does not show antimicrobial or channel modulating activities. We have concluded that the main function of magnificamide is the inhibition of α-amylases; therefore, its functionally active recombinant analog is a promising agent for further studies as a potential drug candidate for the treatment of the type 2 diabetes mellitus.


Asunto(s)
Moco/química , Péptidos/farmacología , Anémonas de Mar/química , alfa-Amilasas/antagonistas & inhibidores , beta-Defensinas/farmacología , Secuencia de Aminoácidos , Animales , Glucemia/efectos de los fármacos , Venenos de Cnidarios/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos
3.
Mar Drugs ; 16(6)2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29794988

RESUMEN

Sea anemones produce pore-forming toxins, actinoporins, which are interesting as tools for cytoplasmic membranes study, as well as being potential therapeutic agents for cancer therapy. This investigation is devoted to structural and functional study of the Heteractis crispa actinoporins diversity. Here, we described a multigene family consisting of 47 representatives expressed in the sea anemone tentacles as prepropeptide-coding transcripts. The phylogenetic analysis revealed that actinoporin clustering is consistent with the division of sea anemones into superfamilies and families. The transcriptomes of both H. crispa and Heteractis magnifica appear to contain a large repertoire of similar genes representing a rapid expansion of the actinoporin family due to gene duplication and sequence divergence. The presence of the most abundant specific group of actinoporins in H. crispa is the major difference between these species. The functional analysis of six recombinant actinoporins revealed that H. crispa actinoporin grouping was consistent with the different hemolytic activity of their representatives. According to molecular modeling data, we assume that the direction of the N-terminal dipole moment tightly reflects the actinoporins' ability to possess hemolytic activity.


Asunto(s)
Venenos de Cnidarios/farmacología , Hemólisis/efectos de los fármacos , Familia de Multigenes/genética , Proteínas Citotóxicas Formadoras de Poros/farmacología , Anémonas de Mar/genética , Secuencia de Aminoácidos , Animales , Membrana Celular/efectos de los fármacos , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Simulación por Computador , Duplicación de Gen , Simulación de Dinámica Molecular , Filogenia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Anémonas de Mar/metabolismo , Transcriptoma/genética
4.
Mar Drugs ; 14(12)2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27983679

RESUMEN

Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1-APHC3 from H. crispa, and clusters with the peptides from so named "analgesic cluster" of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10-7 and 7.0 × 10-7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 µM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21-TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides.


Asunto(s)
Venenos de Cnidarios/química , Péptidos/química , Anémonas de Mar/química , Canales Catiónicos TRPV/antagonistas & inhibidores , Secuencia de Aminoácidos , Analgésicos/química , Analgésicos/farmacología , Animales , Quimotripsina/química , Quimotripsina/farmacología , Péptidos/farmacología , Alineación de Secuencia
5.
Mar Drugs ; 13(10): 6038-63, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26404319

RESUMEN

Sea anemones are a rich source of Kunitz-type polypeptides that possess not only protease inhibitor activity, but also Kv channels toxicity, analgesic, antihistamine, and anti-inflammatory activities. Two Kunitz-type inhibitors belonging to a new Heteractis crispa RG (HCRG) polypeptide subfamily have been isolated from the sea anemone Heteractis crispa. The amino acid sequences of HCRG1 and HCRG2 identified using the Edman degradation method share up to 95% of their identity with the representatives of the HCGS polypeptide multigene subfamily derived from H. crispa cDNA. Polypeptides are characterized by positively charged Arg at the N-terminus as well as P1 Lys residue at their canonical binding loop, identical to those of bovine pancreatic trypsin inhibitor (BPTI). These polypeptides are shown by our current evidence to be more potent inhibitors of trypsin than the known representatives of the HCGS subfamily with P1Thr. The kinetic and thermodynamic characteristics of the intermolecular interactions between inhibitors and serine proteases were determined by the surface plasmon resonance (SPR) method. Residues functionally important for polypeptide binding to trypsin were revealed using molecular modeling methods. Furthermore, HCRG1 and HCRG2 possess anti-inflammatory activity, reducing tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) secretions, as well as proIL-1ß expression in lipopolysaccharide (LPS)-activated macrophages. However, there was no effect on nitric oxide (NO) generation.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Macrófagos/efectos de los fármacos , Péptidos/aislamiento & purificación , Anémonas de Mar/química , Secuencia de Aminoácidos , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Modelos Moleculares , Péptidos/química , Péptidos/farmacología , Resonancia por Plasmón de Superficie , Termodinámica , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación , Inhibidores de Tripsina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
6.
Toxins (Basel) ; 15(5)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37235375

RESUMEN

Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.


Asunto(s)
Ansiolíticos , Proteína HMGB3 , Anémonas de Mar , Toxinas Biológicas , Ratas , Ratones , Humanos , Animales , Ansiolíticos/farmacología , Anémonas de Mar/química , Diclofenaco , Proteína HMGB2 , Péptidos/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Toxinas Biológicas/farmacología , Factores de Transcripción , Roedores , Antiinflamatorios/farmacología
7.
Mar Drugs ; 10(7): 1545-1565, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22851925

RESUMEN

The primary structure of a new Kunitz-type protease inhibitor InhVJ from the sea anemone Heteractis crispa (Radianthus macrodactylus) was determined by protein sequencing and cDNA cloning. InhVJ amino acid sequence was shown to share high sequence identity (up to 98%) with the other known Kunitz-type sea anemones sequences. It was determined that the P1 Thr at the reactive site resulted in a decrease of the K(i) of InhVJ to trypsin and α-chymotrypsin (7.38 × 10(-8) M and 9.93 × 10(-7) M, respectively). By structure modeling the functional importance of amino acids at the reactive site as well as at the weak contact site were determined. The significant role of Glu45 for the orientation and stabilization of the InhVJ-trypsin complex was elucidated. We can suggest that there has been an adaptive evolution of the P1 residue at the inhibitor reactive site providing specialization or functional diversification of the paralogs. The appearance of a key so-called P1 Thr residue instead of Lys might lead to refinement of inhibitor specificity in the direction of subfamilies of serine proteases. The absence of Kv channel and TRPV1-receptor modulation activity was confirmed by electrophysiological screening tests.


Asunto(s)
Anémonas de Mar/química , Inhibidores de Tripsina/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Inhibidores de Tripsina/aislamiento & purificación , Inhibidores de Tripsina/farmacología
8.
Toxins (Basel) ; 15(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36668828

RESUMEN

Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins-potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.


Asunto(s)
Venenos de Cnidarios , Neurotoxinas , Anémonas de Mar , Canales de Sodio , Animales , Humanos , Venenos de Cnidarios/toxicidad , Neurotoxinas/toxicidad , Neurotoxinas/química , Péptidos , Anémonas de Mar/química , Canales de Sodio/efectos de los fármacos
9.
Toxins (Basel) ; 14(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36287966

RESUMEN

The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels, provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2 Metox and Hmg 1b-5, were isolated from the sea anemone Heteractis magnifica and characterized as novel nAChR ligands and acid-sensing ion channel (ASIC) modulators. All peptides competed with radiolabeled α-bungarotoxin for binding to Torpedo californica muscle-type and human α7 nAChRs. Hmg 1b-2 potentiated acetylcholine-elicited current in human α7 receptors expressed in Xenopus laevis oocytes. Moreover, the multigene family coding APETx-like peptides library from H. magnifica was described and in silico surface electrostatic potentials of novel peptides were analyzed. To explain the 100% identity of some peptide isoforms between H. magnifica and H. crispa, 18S rRNA, COI, and ITS analysis were performed. It has been shown that the sea anemones previously identified by morphology as H. crispa belong to the species H. magnifica.


Asunto(s)
Receptores Nicotínicos , Anémonas de Mar , Toxinas Biológicas , Animales , Humanos , Anémonas de Mar/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Bungarotoxinas , Canales Iónicos Sensibles al Ácido , Acetilcolina/metabolismo , Ligandos , ARN Ribosómico 18S/metabolismo , Toxinas Biológicas/metabolismo , Péptidos/química , Colinérgicos/metabolismo
10.
Biomedicines ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201624

RESUMEN

Currently the TRPV1 (transient receptor potential vanilloid type 1) channel is considered to be one of the main targets for pro-inflammatory mediators including TNF-α. Similarly, the inhibition of TRPV1 activity in the peripheral nervous system affects pro-inflammatory mediator production and enhances analgesia in total. In this study, the analgesic and anti-inflammatory effects of HCRG21, the first peptide blocker of TRPV1, were demonstrated in a mice model of carrageenan-induced paw edema. HCRG21 in doses of 0.1 and 1 mg/kg inhibited edema formation compared to the control, demonstrated complete edema disappearance in 24 h in a dose of 1 mg/kg, and effectively reduced the productionof TNF-α in both doses examined. ELISA analysis of blood taken 24 h after carrageenan administration showed a dramatic cytokine value decrease to 25 pg/mL by HCRG21 versus 100 pg/mL in the negative control group, which was less than the TNF-α level in the intact group (40 pg/mL). The HCRG21 demonstrated potent analgesic effects on the models of mechanical and thermal hyperalgesia in carrageenan-induced paw edema. The HCRG21 relief effect was comparable to that of indomethacin taken orally in a dose of 5 mg/kg, but was superior to this nonsteroidal anti-inflammatory drug (NSAID) in duration (which lasted 24 h) in the mechanical sensitivity experiment. The results confirm the existence of a close relationship between TRPV1 activity and TNF-α production once again, and prove the superior pharmacological potential of TRPV1 blockers and the HCRG21 peptide in particular.

11.
Biomedicines ; 9(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802055

RESUMEN

Kunitz-type peptides from venomous animals have been known to inhibit different proteinases and also to modulate ion channels and receptors, demonstrating analgesic, anti-inflammatory, anti-histamine and many other biological activities. At present, there is evidence of their neuroprotective effects. We have studied eight Kunitz-type peptides of the sea anemone Heteractis crispa to find molecules with cytoprotective activity in the 6-OHDA-induced neurotoxicity model on neuroblastoma Neuro-2a cells. It has been shown that only five peptides significantly increase the viability of neuronal cells treated with 6-OHDA. The TRPV1 channel blocker, HCRG21, has revealed the neuroprotective effect that could be indirect evidence of TRPV1 involvement in the disorders associated with neurodegeneration. The pre-incubation of Neuro-2a cells with HCRG21 followed by 6-OHDA treatment has resulted in a prominent reduction in ROS production compared the untreated cells. It is possible that the observed effect is due to the ability of the peptide act as an efficient free-radical scavenger. One more leader peptide, InhVJ, has shown a neuroprotective activity and has been studied at concentrations of 0.01-10.0 µM. The target of InhVJ is still unknown, but it was the best of all eight homologous peptides in an absolute cell viability increment on 38% of the control in the 6-OHDA-induced neurotoxicity model. The targets of the other three active peptides remain unknown.

12.
Biomedicines ; 8(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158163

RESUMEN

The Kunitz/BPTI peptide family includes unique representatives demonstrating various biological activities. Electrophysiological screening of peptides HCRG1 and HCRG2 from the sea anemone Heteractis crispa on six Kv1.x channel isoforms and insect Shaker IR channel expressed in Xenopus laevis oocytes revealed their potassium channels blocking activity. HCRG1 and HCRG2 appear to be the first Kunitz-type peptides from sea anemones blocking Kv1.3 with IC50 of 40.7 and 29.7 nM, respectively. In addition, peptides mainly vary in binding affinity to the Kv1.2 channels. It was established that the single substitution, Ser5Leu, in the TRPV1 channel antagonist, HCRG21, induces weak blocking activity of Kv1.1, Kv1.2, and Kv1.3. Apparently, for the affinity and selectivity of Kunitz-fold toxins to Kv1.x isoforms, the number and distribution along their molecules of charged, hydrophobic, and polar uncharged residues, as well as the nature of the channel residue at position 379 (Tyr, Val or His) are important. Testing the compounds in a model of acute local inflammation induced by the introduction of carrageenan administration into mice paws revealed that HCRG1 at doses of 0.1-1 mg/kg reduced the volume of developing edema during 24 h, similar to the effect of the nonsteroidal anti-inflammatory drug, indomethacin, at a dose of 5 mg/kg. ELISA analysis of the animals blood showed that the peptide reduced the synthesis of TNF-α, a pro-inflammatory mediator playing a leading role in the development of edema in this model.

13.
Toxins (Basel) ; 12(4)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326130

RESUMEN

Currently, five peptide modulators of acid-sensing ion channels (ASICs) attributed to structural class 1b of sea anemone toxins have been described. The APETx2 toxin is the first and most potent ASIC3 inhibitor, so its homologs from sea anemones are known as the APETx-like peptides. We have discovered that two APETx-like peptides from the sea anemone Heteractis crispa, Hcr 1b-3 and Hcr 1b-4, demonstrate different effects on rASIC1a and rASIC3 currents. While Hcr 1b-3 inhibits both investigated ASIC subtypes with IC50 4.95 ± 0.19 µM for rASIC1a and 17 ± 5.8 µM for rASIC3, Hcr 1b-4 has been found to be the first potentiator of ASIC3, simultaneously inhibiting rASIC1a at similar concentrations: EC50 1.53 ± 0.07 µM and IC50 1.25 ± 0.04 µM. The closest homologs, APETx2, Hcr 1b-1, and Hcr 1b-2, previously demonstrated the ability to inhibit hASIC3 with IC50 63 nM, 5.5, and 15.9 µM, respectively, while Hcr 1b-2 also inhibited rASIC1a with IC50 4.8 ± 0.3 µM. Computer modeling allowed us to describe the peculiarities of Hcr 1b-2 and Hcr 1b-4 interfaces with the rASIC1a channel and the stabilization of the expanded acidic pocket resulting from peptides binding which traps the rASIC1a channel in the closed state.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Venenos de Cnidarios/farmacología , Péptidos/farmacología , Anémonas de Mar , Animales , Venenos de Cnidarios/química , Modelos Moleculares , Oocitos , Péptidos/química , Proteínas Recombinantes , Xenopus laevis
14.
Toxins (Basel) ; 12(1)2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936885

RESUMEN

Toxins modulating NaV channels are the most abundant and studied peptide components of sea anemone venom. Three type-II toxins, δ-SHTX-Hcr1f (= RpII), RTX-III, and RTX-VI, were isolated from the sea anemone Heteractis crispa. RTX-VI has been found to be an unusual analog of RTX-III. The electrophysiological effects of Heteractis toxins on nine NaV subtypes were investigated for the first time. Heteractis toxins mainly affect the inactivation of the mammalian NaV channels expressed in the central nervous system (NaV1.1-NaV1.3, NaV1.6) as well as insect and arachnid channels (BgNaV1, VdNaV1). The absence of Arg13 in the RTX-VI structure does not prevent toxin binding with the channel but it has changed its pharmacological profile and potency. According to computer modeling data, the δ-SHTX-Hcr1f binds within the extracellular region of the rNaV1.2 voltage-sensing domain IV and pore-forming domain I through a network of strong interactions, and an additional fixation of the toxin at the channel binding site is carried out through the phospholipid environment. Our data suggest that Heteractis toxins could be used as molecular tools for NaV channel studies or insecticides rather than as pharmacological agents.


Asunto(s)
Venenos de Cnidarios/toxicidad , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Venenos de Cnidarios/química , Activación del Canal Iónico , Péptidos , Anémonas de Mar , Canales de Sodio , Relación Estructura-Actividad , Toxinas Biológicas
15.
Peptides ; 104: 41-49, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29684594

RESUMEN

Sea anemones are an abundant source of various biologically active peptides. The hydrophobic 20% ethanol fraction of tropical sea anemone Heteractis crispa was shown to contain at least 159 peptide compounds including neurotoxins, proteinase and α-amylase inhibitors, as well as modulators of acid-sensing ion channels (ASICs). The three new peptides, π-AnmTX Hcr 1b-2, -3, and -4 (41 aa) (short names Hcr 1b-2, -3, -4), identified by a combination of reversed-phase liquid chromatography and mass spectrometry were found to belong to the class 1b sea anemone neurotoxins. The amino acid sequences of these peptides were determined by Edman degradation and tandem mass spectrometry. The percent of identity of Hcr 1b-2, -3, and -4 with well-known ASIC3 inhibitors Hcr 1b-1 from H. crispa and APETx2 from Anthopleura elegantissima is 95-78% and 46-49%, respectively. Electrophysiological experiments on homomeric ASIC channels expressed in Xenopus laevis oocytes establish that these peptides are the first inhibitors of ASIC1a derived from sea anemone venom. The major peptide, Hcr 1b-2, inhibited both rASIC1a (IC50 4.8 ±â€¯0.3 µM; nH 0.92 ±â€¯0.05) and rASIC3 (IC50 15.9 ±â€¯1.1 µM; nH 1.0 ±â€¯0.05). The maximum inhibition at saturating peptide concentrations reached 64% and 81%, respectively. In the model of acid-induced muscle pain Hcr 1b-2 was also shown to exhibit an antihyperalgesic effect, significantly reducing of the pain threshold of experimental animals.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Péptidos/química , Péptidos/farmacología , Anémonas de Mar/química , Animales , Electrofisiología , Etanol/química , Mialgia/metabolismo , Neurotoxinas/química , Neurotoxinas/farmacología , Espectrometría de Masas en Tándem
16.
J Proteomics ; 173: 12-21, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29191747

RESUMEN

Sea anemone mucus, due to its multiple and vital functions, is a valuable substance for investigation of new biologically active peptides. In this work, compounds of Heteractis magnifica mucus were separated by multistage liquid chromatography and resulting fractions were analyzed by MALDI-TOF MS. Peptide maps constructed according to the molecular masses and hydrophobicity showed presence of 326 both new and known peptides. Several major peptides from mucus were identified, including the sodium channel toxin RpII isolated earlier from H. magnifica, and four Kunitz-type proteinase inhibitors identical to H. crispa ones. Kunitz-type transcript diversity was studied and sequences of mature peptides were deduced. New ß-defensin α-amylase inhibitor, a homolog of helianthamide from Stichodactyla helianthus, was isolated and structurally characterized. Overall, H. magnifica is a source of biologically active peptides with great pharmacological potential. BIOLOGICAL SIGNIFICANCE: Proteinase and α-amylase inhibitors along with toxins are major components of H. magnifica mucus which play an important role in the successful existence of sea anemones. Obtained peptide maps create a basis for more accurate identification of peptides during future transcriptomic/genomic studies of sea anemone H. magnifica.


Asunto(s)
Moco/química , Mapeo Peptídico/métodos , Péptidos/análisis , Anémonas de Mar/química , Animales , Neurotoxinas , Inhibidores de Proteasas , alfa-Amilasas/antagonistas & inhibidores , beta-Defensinas
17.
Toxicon ; 47(5): 517-20, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16530241

RESUMEN

The amino acid sequence of actinoporin RTX-A (175 aa) from the sea anemone Radianthus macrodactylus was determined by sequencing of clones obtained via amplification of cDNA. It was established that RTX-A possessed high homology with HmgIII from Heteractis magnifica (87%) and StI, StII from Stichodactyla helianthus (84 and 87%, respectively). The analysis of structural and functional relationships within RTX-A was carried out. The some disagreement concerning to significant role of several amino acid residues for actinoporins exhibition of hemolytic activity was found.


Asunto(s)
Venenos de Cnidarios/química , Citotoxinas/química , Anémonas de Mar/química , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Alineación de Secuencia
18.
Toxicon ; 40(8): 1197-217, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12165324

RESUMEN

Some biologically active polypeptides, three high and two low molecular weight cytolysins and four trypsin inhibitors were isolated from the sea anemone Radianthus macrodactylus and characterized. The purification steps involved acetone precipitation, gel filtration, ion-exchange, and affinity chromatography, and ion-exchange and reverse-phase HPLC. The relative molecular weight of high molecular weight Radianthus cytolysins named according to their N-terminal amino acids RTX-A (Ala), RTX-S (Ser) and RTX-G (Gly) was about 20,000. The isoelectric points were 9.8 for RTX-A and RTX-S, and 10.5 for RTX-G. The hemolytic activities of RTX-A, RTX-S and RTX-G were 3.5 x 10(4), 5.0 x10(4), and 1.0 x10(4)HU/mg, respectively, and were inhibited by sphingomyelin. The N-terminal amino acid sequence of RTX-A was determined as ALAGAIIAGAGLGLKILIEVLGEG-VKVKI-. Molecular weight of low molecular weight Radianthus cytolysins RmI, RmII, and of one trypsin inhibitor InI were 5100, 6100 and 7100, respectively. Isoelectric points for RmI and RmII were 9.2 and 9.3. Their hemolytic activity worked out 25 and 20 HU/mg, and was not inhibited by sphingomyelin. Toxicity of RmI and RmII was assessed by their histaminolytic activity. Amino acid composition of RmI and RmII was similar to that of tealiatoxin, histaminolytic cytolysin from the sea anemone Tealia felina.


Asunto(s)
Venenos de Cnidarios/análisis , Citotoxinas/química , Citotoxinas/toxicidad , Péptidos/química , Péptidos/toxicidad , Inhibidores de Tripsina/química , Inhibidores de Tripsina/farmacología , Acetona , Secuencia de Aminoácidos , Aminoácidos/análisis , Animales , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Citotoxinas/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Hemólisis/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/farmacología , Humanos , Técnicas In Vitro , Focalización Isoeléctrica , Dosificación Letal Mediana , Lípidos/sangre , Datos de Secuencia Molecular , Peso Molecular , Péptidos/aislamiento & purificación , Fosfolipasas A/metabolismo , Proteínas/análisis , Solventes , Inhibidores de Tripsina/aislamiento & purificación , Células Tumorales Cultivadas
19.
Toxicon ; 44(3): 315-24, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15302538

RESUMEN

A new cytolytic toxin, actinoporin RTX-S II, was isolated from the sea anemone Radianthus macrodactylus with a high degree of purity by a combination of gel filtration, ion-exchange and reverse-phase chromatography. RTX-S II has molecular mass of 19,280 Da and isoelectric point of 10.0. The hemolytic activity of RTX-S II is inhibited by sphingomyelin. RTX-S II had an LD(50) of 70 mg/kg, and is lacking in phospholipase activity. The amino acid composition of this protein contains a high amount of basic and non-polar amino acids and no cysteine. The N-terminal sequence of RTX-S II was determined. The partial amino acid sequence (141 aa) of RTX-S II was deduced based on the cDNA sequence obtained with two oligonucleotides encoding the N-terminal portion of RTX-S II and the internal conserved cytolysin peptide by PCR. A comparison of the RTX-S II cDNA sequence and the rtx-s II gene obtained with the same PCR primers indicates that they are 100% identical at the nucleotide level. It shows that no introns are present in the corresponding region of the rtx-s II gene. Multiple alignments of RTX-S II with known sequences of actinoporins show that RTX-S II is highly homologous to magnificalysin II from Heteractis magnifica. The predicted secondary structure of RTX-S II is predominantly anti-parallel beta-structure, which is in good agreement with experimental data obtained from other sea anemones-actinoporins.


Asunto(s)
Citotoxinas/química , Citotoxinas/genética , Anémonas de Mar , Secuencia de Aminoácidos , Animales , Emparejamiento Base , Bioensayo , Cromatografía Líquida de Alta Presión , Citotoxinas/toxicidad , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Hemólisis/efectos de los fármacos , Dosificación Letal Mediana , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de Proteína , Espectrofotometría Ultravioleta
20.
Peptides ; 34(1): 88-97, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22001835

RESUMEN

Despite a considerable number of publications devoted to isolation and physicochemical properties of protease inhibitors from sea anemones, virtually nothing is known about the structure of the genes, and the nature of their isoforms diversity. Using the PCR-based cloning approach we discovered the Kunitz-type multigene superfamily composed of distinct gene families (GS-, RG-, GG-, and GN-gene families). It has been identified only three full-length GS-transcripts indicating a much greater variety of Kunitz homologs in Heteractis crispa. We have examined an exon-intron structure of GS-genes; an open reading frame is interrupted by a single intron located at the middle of the signal peptide. 33 deduced mature GS-polypeptides have been categorized into three groups according to the nature of a P1 residue. Some of them corresponded to native Kunitz-type protease inhibitors earlier isolated from H. crispa. The deduced GS-polypeptide sequences demonstrated diverse charge distribution ranging from the local point charges forms to the overall positive ones. We have suggested that the GS-gene family has evolved through gene tandem duplication followed by adaptive divergence of the P1 residue in the reactive site selected for divergent functions in paralogs. The expansion of this Kunitz-type multigene superfamily during evolution is lineage-specific, providing the tropical sea anemone H. crispa with the ability to interact an increasing diversity of the preys and predators. Our results show that the Kunitz-type polypeptides are encoded by a multigene superfamily and realized via a combinatory Kunitz-type library in the H. crispa tentacles venom.


Asunto(s)
Péptidos/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Anémonas de Mar/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Péptidos/química , Péptidos/clasificación , Péptidos/genética , Filogenia , Reacción en Cadena de la Polimerasa , Inhibidores de Proteasas/clasificación , Anémonas de Mar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA