Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(11): e202303455, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38149717

RESUMEN

Novel isomorphous tetranuclear complexes, [(dppf)Cu(µ3 ,η2 : 2 : 2 -E2 {CpMo(CO)2 }2 ]BF4 [E=P (1), As (4), Sb (5), (dppf=1,1'-bis-(diphenylphosphino)-ferrocene)] and [(dppf)Cu(µ3 ,η2 : 2 : 2 -PE{CpMo(CO)2 }2 ]BF4 [E=As (2), Sb(3)] were synthesized from the reactions between [(dppf)Cu(MeCN)2 ][BF4 ] and tetrahedral molybdenum complexes containing unsubstituted homo- and hetero-diatomic group-15 elements [(µ,η2 : 2 -E2 {CpMo(CO)2 }2 ] [E=P (A), As (D), Sb (E)] and [(µ,η2 : 2 -PE{CpMo(CO)2 }2 ] [E=As (B), Sb (C)], respectively. In all these products, the {Mo2 E2 } or {Mo2 PE} moieties coordinate the Cu(I) center via a rare side-on η2 -coordination mode. The X-ray structure analyses of [(dppf)Cu(µ3 ,η2 : 2 : 1 -PSb{CpMo(CO)2 }2 ][BF4 ] demonstrate, for the first time, the utilization of an η1 -coordination mode for the ligand complex C to coordinate to the Cu(I) center. All the products were characterized by X-ray crystallography, NMR and IR spectroscopy, mass spectrometry and elemental analysis. Electrochemical studies also revealed the formation of 1-5, and, further, to understand the structure and bonding of the products, theoretical calculations using density functional theory (DFT) were conducted.

2.
Chemistry ; : e202401562, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140457

RESUMEN

Noninvasive control over the reversible generation of singlet oxygen (1O2) has found the enormous practical implications in the field of biomedical science. However, metal-free pure organic emitters, connected with a photoswitch, capable of generating "on-demand" 1O2 via triplet harvesting remain exceedingly rare; therefore, the utilization of these organic materials for the reversible control of singlet oxygen production remains at its infancy. Herein, an ambient triplet mediated emission in quinoline-dithienylethene (DTE)-core-substituted naphthalene diimide (cNDI) derivative is unveiled via delayed fluorescence. The quinoline-DTE-cNDI triad displayed enhanced photoswitching efficiency via double FRET mechanism.  It was found to have direct utilization in controlled photosensitized organic transformations via efficient generation of singlet oxygen (yield ΦΔ ~ 0.73). The designed molecule exhibits a long-lived emission (τ ∼ 1.1 µs) and very small singlet-triplet splitting (ΔSET) of 0.13 eV empowering it to display delayed fluorescence. Comprehensive steady state and time-resolved emission spectroscopy (TRES) analyses along with DFT calculations offer detailed understandings into the excited-state manifolds of organic compound and energy transfer (ET) pathways involved in 1O2 generation.

3.
J Org Chem ; 89(10): 7095-7108, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701377

RESUMEN

An earth-abundant Co(II) salt-catalyzed mild and affordable synthetic route has been developed for the synthesis of industrially relevant 1,4-dicarbonyl compounds (or γ-diketones) via oxidative coupling between aryl alkenes and ketones (both cyclic and acyclic) using TBHP and DBU as the oxidant and base, respectively. 1,4-Dicarbonyl compounds are known to be synthesized using expensive metal catalysts, dual catalysts, or low-cost metal complexes combined with an additive or ligand template, which further needs to be synthesized. Herein, we report the synthesis of 1,4-dicarbonyl compounds using cobalt(II) acetate as a catalyst without any expensive co-catalyst or ligand templates. This methodology has a broad substrate scope with significant yields and good functional group tolerance. Generation of unsymmetrical 1,4-dicarbonyls at room temperature and its versatile synthetic expansion to produce synthetically and biologically valuable heterocyclic compounds are salient features of this novel methodology. In addition, various controlled experiments such as primary kinetic isotope effect study, Hammett analysis with variation of the nature of the substituents on the styrene ring, and theoretical calculations (density functional theory) unravel the mechanistic intricacies involved in this new, simple, and atom-economic methodology.

4.
Chemistry ; 29(46): e202301314, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37262061

RESUMEN

Photochromic fluorescent molecules dramatically extend their fields of applications ranging from optical memories, bioimaging, photoswitches, photonic devices, anti-counterfeiting technology and many more. Here, we have logically designed and synthesized a triazole appended bis-(dithienylethene)-naphthalenediimide based photo-responsive material, 5, which demonstrated fluorescence enhancement property upon photocyclization (ΦF =0.42), with high photocyclization (44 s, ksolution =0.0355 s-1 , ksolid =0.0135 s-1 ) and photocycloreversion (160 s, ksolution =0.0181 s-1 , ksolid =0.0085 s-1 ) rate and decent photoreaction quantum yield (Φo→c =0.93 and Φc→o =0.11). The open isomer almost converted to the closed isomer at photo-stationary state (PSS) with distinct color change from colorless to blue with 92.85 % conversion yield. A reversible noninvasive modulation of fluorescence through efficient photoinduced electron transfer (PET) process was observed both in solution as well as in solid state. The fluorescence modulation through PET process was further corroborated with thermodynamic calculations using the Rehm-Weller equation and quantum chemical studies (DFT). The thermally stable compound 5 exhibits high fatigue resistance property (up to 50 cycles) both in solution and solid state. Furthermore, the compound 5 was successfully applied as erasable ink and in deciphering secret codes (Quick Response/bar code) portending potential promising application in anti-counterfeiting.

5.
Inorg Chem ; 60(8): 6086-6098, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33829773

RESUMEN

The C2-symmetric photochromic molecule 3, containing dithienylethene (DTE) and ferrocene units connected by an alkyne bridge, represents a unique probe where a metal (Hg2+) binds with the central DTE moiety. Both photoisomerized states of 3 (open, 3o; closed, 3c) are found to interact with Hg2+ ion by the S atoms of the DTE core; however, the binding constants (from a UV-vis study) and DFT calculations suggest that the open isomer (3o) binds with the metal ion more strongly than that of the closed isomer (3c). Notably, the course of metal binding does not perturb the inherent photoisomerization properties of the DTE core and the photoswitchability persists even in the metal-coordinated form of 3, however, with a comparatively slower rate. The quantum yields for photocyclization (Φo→c) and photocycloreversion (Φc→o) in the free form are 0.56 and 0.007, respectively, whereas the photocyclization quantum yield in the Hg2+ complexed species is 0.068, 8.2 times lower than the photocyclization quantum yield (Φo→c) of free 3o. Thus, the rate of photoisomerization can be modulated by a suitable metal coordination to the DTE core. The dynamics of photoswitchability in the metal-coordinated form of DTE has been explored by experimental means (UV-vis and electrochemical studies) as well as quantum chemical calculations.

6.
Inorg Chem ; 58(4): 2744-2754, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30701960

RESUMEN

The synergic property of the CO ligand, in general, can stabilize metal complexes at lower oxidation states. Utilizing this feature of the CO ligand, we have recently isolated and structurally characterized a highly fluxional molybdenum complex [{Cp*Mo(CO)2}2{µ-η2:η2-B2H4}] (2; Cp* = η5-C5Me5) comprising the diborane(4) ligand. Compound 2 represents a rare class of bimetallic diborane(4) complex corresponding to a singly bridged C s structure. In an attempt to isolate the tungsten analogue of 2, [{Cp*W(CO)2}2{µ-η2:η2-B2H4}], we have isolated a rare vertex-fused cluster, [(Cp*W)3WB9H18] (5). Having a structural likeness with the dimolybdenum alkyne complex [{CpMo(CO)2}2C2H2], we have further explored the chemistry of 2 with CO gas that yielded a homoleptic trimolybdenum complex, [(Cp*Mo)3(µ-H)2(µ3-H)(µ-CO)2B4H4] (4). In an attempt to replace the 16-electron {Cp*MoH(CO)2} moiety in 4 with isolobal fragment {W(CO)5}, we treated the intermediate, obtained from the reaction of Cp*MoCl4 and LiBH4, with the monometal carbonyl fragment {W(CO)5·THF}. The reaction indeed yielded two bimetallic clusters, [(Cp*Mo)2B4H8W(CO)4] (7) and [(Cp*Mo)2B4H6W(CO)5] (8), that seem to have been generated by the replacement of one {BH} or {BH3} vertex from [(Cp*Mo)2B5H9], respectively. All of the compounds have been characterized by various spectroscopic analyses and single-crystal X-ray diffraction studies. Electron-counting rules and molecular orbital analyses provided further insight into the electronic structure of all of these molecules.

7.
Inorg Chem ; 58(4): 2346-2353, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30707017

RESUMEN

The field of diborinane is sparsely explored area, and not many compounds are structurally characterized. The room-temperature reaction of [{Cp*RuCl(µ-Cl)}2] (Cp* = η5-C5Me5) with Na[BH3(SCHS)] yielded ruthenium dithioformato [{Cp*Ru(µ,η3-SCHS)}2], 1, and 1-thioformyl-2,6-tetrahydro-1,3,5-trithia-2,6-diborinane complex, [(Cp*Ru){(η2-SCHS)CH2S2(BH2)2}], 2. To investigate the reaction pathway for the formation of 2, we carried out the reaction of [(BH2)4(CH2S2)2], 3, with 1 that yielded compound 2. To the best of our knowledge, it appears that compound 2 is the first example of a ruthenium diborinane complex where the central six-membered ring [CB2S3] adopts the chair conformation. Furthermore, room temperature reaction of 1 with [BH3·thf] resulted in the isolation of agostic-bis(σ-borate) complex, [Cp*Ru(µ-H)2BH(S-CH═S)], 4. Thermolysis of 4 with trace amount of tellurium powder led to formation of bis(bridging-boryl) complex, [{Cp*Ru(µ,η2-HBS2CH2)}2], 5, via dimerization of 4 followed by dehydrogenation. Compound 5 can be considered as a bis(bridging-boryl) species, in which the boryl units are connected to two ruthenium atoms. Theoretical studies and chemical bonding analyses demonstrate the reason for exceptional reactivity and stability of these complexes.

8.
Angew Chem Int Ed Engl ; 57(27): 8079-8083, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29697175

RESUMEN

The reaction of [(Cp*Mo)2 (µ-Cl)2 B2 H6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2 }2 {µ-η2 :η2 -B2 H4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO)2 }2 C2 H2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4 ] fragment, [{Cp*Mo(CO)2 }2 B2 H2 W(CO)4 ] (3) was isolated upon treatment with [W(CO)5 ⋅thf]. Compound 3 shows the intriguing presence of [B2 H2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO)2 }2 B2 H2 W(CO)4 ] (4) and [{Cp*W(CO)2 }2 B2 H2 Mo(CO)4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2.

9.
Inorg Chem ; 56(19): 11577-11590, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28925704

RESUMEN

A unique turn-on fluorescent device based on a ferrocene-aminonaphtholate derivative specific for Hg2+ cation was developed. Upon binding with Hg2+ ion, the probe shows a dramatic fluorescence enhancement (the fluorescence quantum yield increases 58-fold) along with a large red shift of 68 nm in the emission spectrum. The fluorescence enhancement with a red shift may be ascribed to the combinational effect of C═N isomerization and an extended intramolecular charge transfer (ICT) mechanism. The response was instantaneous with a detection limit of 2.7 × 10-9 M. Upon Hg2+ recognition, the ferrocene/ferrocenium redox peak was anodically shifted by ΔE1/2 = 72 mV along with a "naked eye" color change from faint yellow to pale orange for this metal cation. Further, upon protonation of the imine nitrogen, the present probe displays a high fluorescence output due to suppression of the C═N isomerization process. Upon deprotonation using strong base, the fluorescence steadily decreases, which indicates that H+ and OH- can be used to regulate the off-on-off fluorescence switching of the present probe. Density functional theory studies revealed that the addition of acid leads to protonation of the imine N (according to natural bond orbital analysis), and the resulting iminium proton forms a strong H-bond (2.307 Å) with one of the triazole N atoms to form a five-membered ring, which makes the molecule rigid; hence, enhancement of the ICT process takes place, thereby leading to a fluorescence enhancement with a red shift. The unprecedented combination of H+, OH-, and Hg2+ ions has been used to generate a molecular system exhibiting the INHIBIT-OR combinational logic operation.

10.
Chemistry ; 21(9): 3640-8, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25537367

RESUMEN

Building upon our earlier results on the synthesis of electron-precise transition-metal-boron complexes, we continue to investigate the reactivity of pentaborane(9) and tetraborane(10) analogues of ruthenium and rhodium towards thiazolyl and oxazolyl ligands. Thus, mild thermolysis of nido-[(Cp*RuH)2B3H7] (1) with 2-mercaptobenzothiazole (2-mbtz) and 2-mercaptobenzoxazole (2-mboz) led to the isolation of Cp*-based (Cp* = η(5)-C5Me5) borate complexes 5 a,b [Cp*RuBH3L] (5 a: L = C7H4NS2; 5 b: L = C7H4NOS)) and agostic complexes 7 a,b [Cp*RuBH2(L)2], (7 a: L = C7H4NS2; 7 b: L = C7H4NOS). In a similar fashion, a rhodium analogue of pentaborane(9), nido-[(Cp*Rh)2B3H7] (2) yielded rhodaboratrane [Cp*RhBH(L)2], 10 (L = C7H4NS2). Interestingly, when the reaction was performed with an excess of 2-mbtz, it led to the formation of the first structurally characterized N,S-heterocyclic rhodium-carbene complex [(Cp*Rh)(L2)(1-benzothiazol-2-ylidene)] (11) (L = C7H4NS2). Furthermore, to evaluate the scope of this new route, we extended this chemistry towards the diruthenium analogue of tetraborane(10), arachno-[(Cp*RuCO)2B2H6] (3), in which the metal center possesses different ancillary ligands.

11.
Chemistry ; 21(13): 5074-83, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25689833

RESUMEN

A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2 ] (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) with LiBH4 ⋅thf at -78 °C, followed by room-temperature reaction with three equivalents of [Mn2 (CO)10 ] yielded a manganese hexahydridodiborate compound [{(OC)4 Mn}(η(6) -B2 H6 ){Mn(CO)3 }2 (µ-H)] (1) and a triply bridged borylene complex [(µ3 -BH)(Cp*Co)2 (µ-CO)(µ-H)2 MnH(CO)3 ] (2). In a similar fashion, [Re2 (CO)10 ] generated [(µ3 -BH)(Cp*Co)2 (µ-CO)(µ-H)2 ReH(CO)3 ] (3) and [(µ3 -BH)(Cp*Co)2 (µ-CO)2 (µ-H)Co(CO)3 ] (4) in modest yields. In contrast, [Ru3 (CO)12 ] under similar reaction conditions yielded a heterometallic semi-interstitial boride cluster [(Cp*Co)(µ-H)3 Ru3 (CO)9 B] (5). The solid-state X-ray structure of compound 1 shows a significantly shorter boron-boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using (1) H, (11) B, (13) C NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B-H-Mn, a weak B-B-Mn interaction, and an enhanced B-B bonding in 1.

12.
Chemistry ; 21(32): 11393-400, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26118549

RESUMEN

Building upon previous studies on the synthesis of bis(sigma)borate and agostic complexes of ruthenium, the chemistry of nido-[(Cp*Ru)2 B3 H9] (1) with other ligand systems was explored. In this regard, mild thermolysis of nido-1 with 2-mercaptobenzothiazole (2-mbzt), 2-mercaptobenzoxazole (2-mbzo) and 2-mercaptobenzimidazole (2-mbzi) ligands were performed which led to the isolation of bis(sigma)borate complexes [Cp*RuBH3 L] (2 a-c) and ß-agostic complexes [Cp*RuBH2 L2] (3 a-c; 2 a, 3 a: L=C7 H4 NS2 ; 2 b, 3 b: L=C7 H4 NSO; 2 c, 3 c: L=C7 H5 N2 S). Further, the chemistry of these novel complexes towards various diphosphine ligands was investigated. Room temperature treatment of 3 a with [PPh2 (CH2 )n PPh2 ] (n=1-3) yielded [Cp*Ru(PPh2 (CH2 )n PPh2 )-BH2 (L2)] (4 a-c; 4 a: n=1; 4 b: n=2; 4 c: n=3; L=C7 H4 NS2). Mild thermolysis of 2 a with [PPh2 (CH2)n PPh2 ] (n=1-3) led to the isolation of [Cp*Ru(PPh2 (CH2)n PPh2 )(L)] (L=C7 H4 NS2 5 a-c; 5 a: n=1; 5 b: n=2; 5 c: n=3). Treatment of 4 a with terminal alkynes causes a hydroboration reaction to generate vinylborane complexes [Cp*Ru(R-C=CH2 )BH(L2)] (6 and 7; 6: R=Ph; 7: R=COOCH3; L=C7 H4 NS2). Complexes 6 and 7 can also be viewed as η-alkene complexes of ruthenium that feature a dative bond to the ruthenium centre from the vinylinic double bond. In addition, DFT computations were performed to shed light on the bonding and electronic structures of the new compounds.

13.
Inorg Chem ; 54(17): 8673-8, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26347293

RESUMEN

This work describes the synthesis, structural characterizations, and electronic structures of a series of novel homometallic cubane clusters [(Cp*Ru)2{Ru(CO)2}2BH(µ3-E)(µ-H)B(µ-H)3M], (2, M = Cp*Ru, E = CO; 3, M = Ru(Cp*Ru)2(µ-CO)3(µ-H)BH), E = BH), [(Cp*Ru)3(µ3-CO)(BH)3(µ3-H)3], 4, and [(Cp*Ru)2(µ3-CO){Ru(CO)3}2(BH)2(µ-H)B], 5 (Cp* = η(5)-C5Me5). These cubane clusters have been isolated from a thermally driven reaction of diruthenium analogue of pentaborane(9) [(Cp*RuH)2B3H7], 1, and [Ru3(CO)12]. Structural and spectroscopic studies revealed the existence of triply bridged hydrogen (µ3-H) atoms that participate as a vertex in the cubane core formation for compounds 2, 3, and 4. In addition, the crystal structure of these clusters clearly confirms the presence of an electron precise borane ligand (borylene fragment) which is triply bridged to the trimetallic units. Bonding of these novel complexes has been studied computationally by DFT methods, and the studies demonstrate that the cubane clusters 2 and 3 possess 60 cluster valence electrons (cves) with six metal-metal bonds. All the new compounds have been characterized in solution by mass spectrometry; IR; and (1)H, (11)B, and (13)C NMR studies, and the structural types were unequivocally established by crystallographic analysis of compounds 2-5.

14.
Inorg Chem ; 53(2): 667-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24372198

RESUMEN

The preparation, characterization, and electronic structure of the first heterometallic µ9-boride cluster [(Cp*Rh)2{Co6(CO)12}(µ-H)(BH)B)] has been reported. The interstitial boron atom in the title cluster is within the bonding contact of eight metal and one boron atom in a unique tricapped trigonal prism geometry.

15.
Inorg Chem ; 53(19): 10527-35, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25254483

RESUMEN

Reactions of the CS2 and CO2 heterocumulene ligands with nido-ruthenaborane cluster [1,2-(Cp*Ru)2(µ-H)2B3H7], 1, were explored (Cp* = pentamethylcyclopentadienyl). Compound 1 when treated with CS2 underwent metal-assisted hydroboration to yield arachno-ruthenaborane [(Cp*Ru)2(B3H8)(CS2H)], 2, with a dithioformato ligand attached to it. The chemistry of 2 was then explored with various transition metal carbonyl compounds under photolytic and thermolytic conditions. Thermolysis of 2 with [Mn2(CO)10] resulted in the formation of an unprecedented cubane-type cluster [(Cp*Ru)2Mn(CO)3(CS2H2)B3H4], 3, with a rare [M3E5] formulation (E = B, S). On the other hand, when compound 2 was photolyzed in the presence of [Mn2(CO)10], it yielded an incomplete cubane-type cluster [(Cp*Ru)2Mn(CO)3BH2(CS2H2)], 4. The room-temperature reaction of 2 with [Fe2(CO)9] yielded heterometallic arachno clusters [(Cp*Ru)(CO)2{Fe(CO)3}2S2CH3], 6 and [(Cp*Ru)2(B3H8)(CO){Fe(CO)3}2(CS2H)], 7. In contrast, photolysis of 2 with [Fe2(CO)9] yielded a tetrahedral cluster [(Cp*Ru)(CO)2S(µ-H){Fe(CO)3}3], 8, tethered to an exo-polyhedral moiety [(Cp*Ru)(CO)2]. Compound 6 provides an unusual bonding pattern by means of fusing the wing-tip vertex (S) of the [Fe2S2] butterfly core by an exo-polyhedral [(Cp*Ru)(CO)2] unit. Density functional theory calculations were carried out to provide insight into the mechanistic pathway, electronic structure, and bonding properties.

16.
Angew Chem Int Ed Engl ; 53(11): 2873-7, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24604809

RESUMEN

A series of novel Cp*-based (Cp*=η(5)-C5Me5) agostic, bis(σ-borate), and boratrane complexes have been synthesized from diruthenium and dirhodium analogues of pentaborane(9). The synthesis and structural characterization of the first neutral ruthenadiborane(6) analogue are also reported. This new route offers a very efficient method for the isolation of bis(σ-borate) and agostic complexes from diruthenapentaborane(9).

17.
Dalton Trans ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145492

RESUMEN

A series of boron difluoro bis(diiminate) complexes have been prepared and used to obtain triflate substituted fluoroborane complexes. The corresponding well-defined bis(borenium) cations were subsequently synthesized and structurally authenticated. We are also presenting the first experimental and theoretical study of bis(borenium) cations that are derivative of cationic borinic acid.

18.
Chemistry ; 19(7): 2337-43, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23293089

RESUMEN

Room temperature photolysis of a triply-bridged borylene complex, [(µ(3)-BH)(Cp*RuCO)(2)(µ-CO)Fe(CO)(3)] (1 a; Cp* = C(5)Me(5)), in the presence of a series of alkynes, 1,2-diphenylethyne, 1-phenyl-1-propyne, and 2-butyne led to the isolation of unprecedented vinyl-borylene complexes (Z)-[(Cp*RuCO)(2)(µ-CO)B(CR)(CHR')] (2: R, R' = Ph; 3: R = Me, R' = Ph; 4: R, R' = Me). This reaction permits a hydroboration of alkyne through an anti-Markovnikov addition. In stark contrast, in the presence of phenylacetylene, a metallacarborane, closo-[1,2-(Cp*Ru)(2)(µ-CO)(2){Fe(2)(CO)(5)}-4-Ph-4,5-C(2)BH(2)] (5 a), is formed. A plausible mechanism has been proposed for the formation of vinyl-borylene complexes, which is supported by density functional theory (DFT) methods. Furthermore, the calculated (11)B NMR chemical shifts accurately reflect the experimentally measured shifts. All the new compounds have been characterized in solution by mass spectrometry and IR, (1)H, (11)B, and (13)C NMR spectroscopies and the structural types were unequivocally established by crystallographic analysis of 2, 5 a, and 5 b.

19.
Chemistry ; 19(45): 15219-25, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24105718

RESUMEN

The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4·THF at -70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(µ3-BH)(Cp*Co)2(µ-CO)M(CO)5] (1-3; 1: M=W, 2: M=Mo, 3: M=Cr). During the syntheses of complexes 1-3, capped-octahedral cluster [(Cp*Co)2(µ-H)(BH)4{Co(CO)2}] (4) was also isolated in good yield. Complexes 1-3 are isoelectronic and isostructural to [(µ3-BH)(Cp*RuCO)2(µ-CO){Fe(CO)3}] (5) and [(µ3-BH)(Cp*RuCO)2(µ-H)(µ-CO){Mn(CO)3}] (6), with a trigonal-pyramidal geometry in which the µ3-BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis-phosphine ligands, the room-temperature photolysis of complexes 1-3, 5, 6, and [{(µ3-BH)(Cp*Ru)Fe(CO)3}2(µ-CO)] (7) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)(n)PPh2] (n=1-3) yielded complexes 9-11, [3,4-(Ph2P(CH2)(n)PPh2)-closo-1,2,3,4-Ru2Fe2(BH)2] (9: n=1, 10: n=2, 11: n=3). Quantum-chemical calculations by using DFT methods were carried out on compounds 1-3 and 9-11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO-LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and (1)H, (13)C, and (11)B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1, 2, 4, 9, and 10.

20.
Inorg Chem ; 52(5): 2262-4, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23410182

RESUMEN

Thermolysis of nido-[(Cp*Mo)2B4TeClH5], with an excess of Co2(CO)8 at room temperature, afforded a triple-decker sandwich complex [(Cp*Mo)2{µ-η(6):η(6)-B3H3TeCo2(CO)5}] (4), which represents an unsaturated 24-valence-electron sandwich cluster in which the middle deck is composed of B, Co, and a heavy group 16 element.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA