Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Immunol ; 24(1): 110-122, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36550321

RESUMEN

Expressed on epidermal Langerhans cells, CD1a presents a range of self-lipid antigens found within the skin; however, the extent to which CD1a presents microbial ligands from bacteria colonizing the skin is unclear. Here we identified CD1a-dependent T cell responses to phosphatidylglycerol (PG), a ubiquitous bacterial membrane phospholipid, as well as to lysylPG, a modified PG, present in several Gram-positive bacteria and highly abundant in Staphylococcus aureus. The crystal structure of the CD1a-PG complex showed that the acyl chains were buried within the A'- and F'-pockets of CD1a, while the phosphoglycerol headgroup remained solvent exposed in the F'-portal and was available for T cell receptor contact. Using lysylPG and PG-loaded CD1a tetramers, we identified T cells in peripheral blood and in skin that respond to these lipids in a dose-dependent manner. Tetramer+CD4+ T cell lines secreted type 2 helper T cell cytokines in response to phosphatidylglycerols as well as to co-cultures of CD1a+ dendritic cells and Staphylococcus bacteria. The expansion in patients with atopic dermatitis of CD4+ CD1a-(lysyl)PG tetramer+ T cells suggests a response to lipids made by bacteria associated with atopic dermatitis and provides a link supporting involvement of PG-based lipid-activated T cells in atopic dermatitis pathogenesis.


Asunto(s)
Dermatitis Atópica , Humanos , Piel , Células de Langerhans , Antígenos CD1 , Autoantígenos/metabolismo , Staphylococcus/metabolismo , Fosfatidilgliceroles
2.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34329375

RESUMEN

Significant innovations in next-generation sequencing techniques and bioinformatics tools have impacted our appreciation and understanding of RNA. Practical RNA sequencing (RNA-Seq) applications have evolved in conjunction with sequence technology and bioinformatic tools advances. In most projects, bulk RNA-Seq data is used to measure gene expression patterns, isoform expression, alternative splicing and single-nucleotide polymorphisms. However, RNA-Seq holds far more hidden biological information including details of copy number alteration, microbial contamination, transposable elements, cell type (deconvolution) and the presence of neoantigens. Recent novel and advanced bioinformatic algorithms developed the capacity to retrieve this information from bulk RNA-Seq data, thus broadening its scope. The focus of this review is to comprehend the emerging bulk RNA-Seq-based analyses, emphasizing less familiar and underused applications. In doing so, we highlight the power of bulk RNA-Seq in providing biological insights.


Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , Algoritmos , Empalme Alternativo , Polimorfismo de Nucleótido Simple
3.
Funct Integr Genomics ; 22(6): 1105-1112, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36409436

RESUMEN

Significant innovations in next-generation sequencing techniques and bioinformatics tools have impacted our appreciation and understanding of RNA. Practical RNASeq applications have evolved in conjunction with sequence technology and bioinformatic tool advances. In this review, we explained various computational resources, tools, and bioinformatics analyses advancement for small and large non-coding RNAs. These include non-coding RNAs (ncRNAs) such as piwi, micro, circular, and long ncRNAs. In addition, this article discusses future challenges, single-cell level sequencing for non-coding RNAs, and advantages of using long-read sequencing to annotate lncRNAs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN Largo no Codificante , RNA-Seq , Biología Computacional , ARN Largo no Codificante/genética
4.
Curr Genomics ; 20(7): 508-518, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32655289

RESUMEN

RATIONALE: PIWI-interacting RNAs (piRNAs) are a recently-discovered class of small non-coding RNAs (ncRNAs) with a length of 21-35 nucleotides. They play a role in gene expression regulation, transposon silencing, and viral infection inhibition. Once considered as "dark matter" of ncRNAs, piRNAs emerged as important players in multiple cellular functions in different organisms. However, our knowledge of piRNAs is still very limited as many piRNAs have not been yet identified due to lack of robust computational predictive tools. METHODS: To identify novel piRNAs, we developed piRNAPred, an integrated framework for piRNA prediction employing hybrid features like k-mer nucleotide composition, secondary structure, thermodynamic and physicochemical properties. A non-redundant dataset (D3349 or D1684p+1665n) comprising 1684 experimentally verified piRNAs and 1665 non-piRNA sequences was obtained from piRBase and NONCODE, respectively. These sequences were subjected to the computation of various sequence-structure based features in binary format and trained using different machine learning techniques, of which support vector machine (SVM) performed the best. RESULTS: During the ten-fold cross-validation approach (10-CV), piRNAPred achieved an overall accuracy of 98.60% with Mathews correlation coefficient (MCC) of 0.97 and receiver operating characteristic (ROC) of 0.99. Furthermore, we achieved a dimensionality reduction of feature space using an attribute selected classifier. CONCLUSION: We obtained the highest performance in accurately predicting piRNAs as compared to the current state-of-the-art piRNA predictors. In conclusion, piRNAPred would be helpful to expand the piRNA repertoire, and provide new insights on piRNA functions.

5.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076853

RESUMEN

The human airway contains specialized rare epithelial cells whose roles in respiratory disease are not well understood. Ionocytes express the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), while chemosensory tuft cells express asthma-associated alarmins. However, surprisingly, exceedingly few mature tuft cells have been identified in human lung cell atlases despite the ready identification of rare ionocytes and neuroendocrine cells. To identify human rare cell progenitors and define their lineage relationship to mature tuft cells, we generated a deep lung cell atlas containing 311,748 single cell RNA-Seq (scRNA-seq) profiles from discrete anatomic sites along the large and small airways and lung lobes of explanted donor lungs that could not be used for organ transplantation. Of 154,222 airway epithelial cells, we identified 687 ionocytes (0.45%) that are present in similar proportions in both large and small airways, suggesting that they may contribute to both large and small airways pathologies in CF. In stark contrast, we recovered only 3 mature tuft cells (0.002%). Instead, we identified rare bipotent progenitor cells that can give rise to both ionocytes and tuft cells, which we termed tuft-ionocyte progenitor cells (TIP cells). Remarkably, the cycling fraction of these TIP cells was comparable to that of basal stem cells. We used scRNA-seq and scATAC-seq to predict transcription factors that mark this novel rare cell progenitor population and define intermediate states during TIP cell lineage transitions en route to the differentiation of mature ionocytes and tuft cells. The default lineage of TIP cell descendants is skewed towards ionocytes, explaining the paucity of mature tuft cells in the human airway. However, Type 2 and Type 17 cytokines, associated with asthma and CF, diverted the lineage of TIP cell descendants in vitro , resulting in the differentiation of mature tuft cells at the expense of ionocytes. Consistent with this model of mature tuft cell differentiation, we identify mature tuft cells in a patient who died from an asthma flare. Overall, our findings suggest that the immune signaling pathways active in asthma and CF may skew the composition of disease-relevant rare cells and illustrate how deep atlases are required for identifying physiologically-relevant scarce cell populations.

6.
Brief Funct Genomics ; 21(3): 159-176, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35265979

RESUMEN

Hematopoietic system (HS) is one of the most unique, adaptive and comprehensive developmental systems on which various other body systems relies on. It consists of a central pool of multipotent hematopoietic stem cells (HSCs) differentiating into lymphoid and myeloid lineage by series of gradual loss of stemness potential. Thus, this highly coordinated phenomenon of blood cell renewal ensures robust immunity and limits autoimmunity. Any disease, chronic infection or stress interrupts HS homeostasis and breaks HSCs' dormancy, thereby activating HSCs to meet the peripheral demand for different immune cells via their expansion and differentiation into more lineage-restricted progenitors, primarily within the bone marrow (BM) in adult life. Therefore, a greater understanding of the overall regulatory landscape of HSC homeostasis and their perturbations is critical for dissecting protective immunity versus autoimmunity. Recent advancements in next-generation sequencing (NGS) viz genomic, transcriptomic, epigenomic and proteogenomic methods at bulk as well as single-cell levels have increased our apprehension for HSC working model. In this review, we discussed the recent findings and computational methods used to unravel the new HSC model revised over the classical model.


Asunto(s)
Hematopoyesis , Transcriptoma , Adulto , Diferenciación Celular/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Humanos , Transcriptoma/genética
7.
Nat Commun ; 13(1): 800, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145093

RESUMEN

Alopecia areata is a complex genetic disease that results in hair loss due to the autoimmune-mediated attack of the hair follicle. We previously defined a role for both rare and common variants in our earlier GWAS and linkage studies. Here, we identify rare variants contributing to Alopecia Areata using a whole exome sequencing and gene-level burden analyses approach on 849 Alopecia Areata patients compared to 15,640 controls. KRT82 is identified as an Alopecia Areata risk gene with rare damaging variants in 51 heterozygous Alopecia Areata individuals (6.01%), achieving genome-wide significance (p = 2.18E-07). KRT82 encodes a hair-specific type II keratin that is exclusively expressed in the hair shaft cuticle during anagen phase, and its expression is decreased in Alopecia Areata patient skin and hair follicles. Finally, we find that cases with an identified damaging KRT82 variant and reduced KRT82 expression have elevated perifollicular CD8 infiltrates. In this work, we utilize whole exome sequencing to successfully identify a significant Alopecia Areata disease-relevant gene, KRT82, and reveal a proposed mechanism for rare variant predisposition leading to disrupted hair shaft integrity.


Asunto(s)
Alopecia Areata/genética , Alopecia Areata/metabolismo , Secuenciación del Exoma , Queratinas Específicas del Pelo/genética , Queratinas Tipo II/genética , Predisposición Genética a la Enfermedad , Variación Genética , Cabello/metabolismo , Folículo Piloso/metabolismo , Humanos , Piel/metabolismo
8.
PNAS Nexus ; 1(3): pgac111, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35899069

RESUMEN

The primary forms of cicatricial (scarring) alopecia (PCA) are a group of inflammatory, irreversible hair loss disorders characterized by immune cell infiltrates targeting hair follicles (HFs). Lichen planopilaris (LPP), frontal fibrosing alopecia (FFA), and centrifugal cicatricial alopecia (CCCA) are among the main subtypes of PCAs. The pathogenesis of the different types of PCAs are poorly understood, and current treatment regimens yield inconsistent and unsatisfactory results. We performed high-throughput RNA-sequencing on scalp biopsies of a large cohort PCA patients to develop gene expression-based signatures, trained into machine-learning-based predictive models and pathways associated with dysregulated gene expression. We performed morphological and cytokine analysis to define the immune cell populations found in PCA subtypes. We identified a common PCA gene signature that was shared between LPP, FFA, and CCCA, which revealed a significant over-representation of mast cell (MC) genes, as well as downregulation of cholesterogenic pathways and upregulation of fibrosis and immune signaling genes. Immunohistological analyses revealed an increased presence of MCs in PCAs lesions. Our gene expression analyses revealed common pathways associated with PCAs, with a strong association with MCs. The indistinguishable differences in gene expression profiles and immune cell signatures between LPP, FFA, and CCCA suggest that similar treatment regimens may be effective in treating these irreversible forms of hair loss.

9.
Methods Mol Biol ; 1912: 215-250, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30635896

RESUMEN

microRNAs are evolutionarily conserved, endogenously produced, noncoding RNAs (ncRNAs) of approximately 19-24 nucleotides (nts) in length known to exhibit gene silencing of complementary target sequence. Their deregulated expression is reported in various disease conditions and thus has therapeutic implications. In the last decade, various computational resources are published in this field. In this chapter, we have reviewed bioinformatics resources, i.e., miRNA-centered databases, algorithms, and tools to predict miRNA targets. First section has enlisted more than 75 databases, which mainly covers information regarding miRNA registries, targets, disease associations, differential expression, interactions with other noncoding RNAs, and all-in-one resources. In the algorithms section, we have compiled about 140 algorithms from eight subcategories, viz. for the prediction of precursor (pre-) and mature miRNAs. These algorithms are developed on various sequence, structure, and thermodynamic based features incorporated into different machine learning techniques (MLTs). In addition, computational identification of miRNAs from high-throughput next generation sequencing (NGS) data and their variants, viz. isomiRs, differential expression, miR-SNPs, and functional annotation, are discussed. Prediction and analysis of miRNAs and their associated targets are also evaluated under miR-targets section providing knowledge regarding novel miRNA targets and complex host-pathogen interactions. In conclusion, we have provided comprehensive review of in silico resources published in miRNA research to help scientific community be updated and choose the appropriate tool according to their needs.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas/estadística & datos numéricos , MicroARNs/metabolismo , Biología Computacional/instrumentación , Redes Reguladoras de Genes , Silenciador del Gen , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Interacciones Huésped-Patógeno/genética , Humanos , Aprendizaje Automático , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN/instrumentación , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/estadística & datos numéricos
10.
G3 (Bethesda) ; 7(9): 2931-2943, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28696921

RESUMEN

Allele-specific siRNAs (ASP-siRNAs) have emerged as promising therapeutic molecules owing to their selectivity to inhibit the mutant allele or associated single-nucleotide polymorphisms (SNPs) sparing the expression of the wild-type counterpart. Thus, a dedicated bioinformatics platform encompassing updated ASP-siRNAs and an algorithm for the prediction of their inhibitory efficacy will be helpful in tackling currently intractable genetic disorders. In the present study, we have developed the ASPsiRNA resource (http://crdd.osdd.net/servers/aspsirna/) covering three components viz (i) ASPsiDb, (ii) ASPsiPred, and (iii) analysis tools like ASP-siOffTar ASPsiDb is a manually curated database harboring 4543 (including 422 chemically modified) ASP-siRNAs targeting 78 unique genes involved in 51 different diseases. It furnishes comprehensive information from experimental studies on ASP-siRNAs along with multidimensional genetic and clinical information for numerous mutations. ASPsiPred is a two-layered algorithm to predict efficacy of ASP-siRNAs for fully complementary mutant (Effmut) and wild-type allele (Effwild) with one mismatch by ASPsiPredSVM and ASPsiPredmatrix , respectively. In ASPsiPredSVM, 922 unique ASP-siRNAs with experimentally validated quantitative Effmut were used. During 10-fold cross-validation (10nCV) employing various sequence features on the training/testing dataset (T737), the best predictive model achieved a maximum Pearson's correlation coefficient (PCC) of 0.71. Further, the accuracy of the classifier to predict Effmut against novel genes was assessed by leave one target out cross-validation approach (LOTOCV). ASPsiPredmatrix was constructed from rule-based studies describing the effect of single siRNA:mRNA mismatches on the efficacy at 19 different locations of siRNA. Thus, ASPsiRNA encompasses the first database, prediction algorithm, and off-target analysis tool that is expected to accelerate research in the field of RNAi-based therapeutics for human genetic diseases.


Asunto(s)
Alelos , Biología Computacional/métodos , Interferencia de ARN , ARN Interferente Pequeño/genética , Programas Informáticos , Algoritmos , Bases de Datos Genéticas , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Humanos , Mutación , Tratamiento con ARN de Interferencia , Reproducibilidad de los Resultados , Navegador Web , Flujo de Trabajo
11.
Sci Rep ; 6: 32713, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27633273

RESUMEN

Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.


Asunto(s)
Filogenia , Proteómica , Programas Informáticos , Infección por el Virus Zika/terapia , Virus Zika/clasificación , Virus Zika/genética , Animales , Codón/genética , Genoma Viral , Glicosilación , Humanos , Técnicas de Diagnóstico Molecular , Anotación de Secuencia Molecular , ARN Viral/metabolismo , Proteínas Virales/metabolismo , Infección por el Virus Zika/virología
12.
Artículo en Inglés | MEDLINE | ID: mdl-25380780

RESUMEN

Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna.


Asunto(s)
Bases de Datos Genéticas , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , ARN Viral/genética , Antivirales , Biología Computacional , Humanos , Internet , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA