Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Angew Chem Int Ed Engl ; 63(2): e202315985, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009627

RESUMEN

Now that the chemistry of 1 : 1 host:guest complexes is well-established, it is surprising to note that higher stoichiometry (oligomeric) complexes, especially those with excess host, remain largely unexplored. Yet, proteins tend to oligomerize, affording new functions for cell machinery. Here, we show that cucurbit[n]uril (CB[n]) macrocycles combined with symmetric, linear di-viologens form unusual 3 : 2 host:guest complexes exhibiting remarkable dynamic properties, host self-sorting, and external ring-translocation. These results highlight the structural tunability of cucurbit[8]uril (CB[8]) based 3 : 2 host:guest complexes in water and their responsiveness toward several stimuli (chemicals, pH, redox).

2.
Chemistry ; 28(5): e202103874, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34821417

RESUMEN

Elaboration of enantioenriched complex acyclic stereotriads represents a challenge for modern synthesis even more when fluorinated tetrasubstituted stereocenters are targeted. We have been able to develop a simple strategy in a sequence of two unprecedented steps combining a diastereoselective aldol-Tishchenko reaction and an enantioselective organocatalyzed kinetic resolution. The aldol-Tishchenko reaction directly generates a large panel of acyclic 1,3-diols possessing a fluorinated tetrasubstituted stereocenter by condensation of fluorinated ketones with aldehydes under very mild basic conditions. The anti 1,3-diols featuring three contiguous stereogenic centers are generated with excellent diastereocontrol (typically >99 : 1 dr). Depending upon the precursors both diastereomers of stereotriads are accessible through this flexible reaction. Furthermore, from the obtained racemic scaffolds, development of an organocatalyzed kinetic resolution enabled to generate the desired enantioenriched stereotriads with excellent selectivity (typically er >95 : 5).


Asunto(s)
Cetonas , Catálisis , Estereoisomerismo
3.
Chemistry ; 28(64): e202201656, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35980006

RESUMEN

The globular and monocationic guest molecule trimethyl-azaphosphatrane (AZAP, a protonated Verkade superbase) was shown to form a host:guest 1 : 1 complex with the cucurbit[10]uril (CB[10]) macrocycle in water. Molecular dynamics calculations showed that CB[10] adopts an 8-shape with AZAP occupying the majority of the internal space, CB[10] contracting around AZAP and leaving a significant part of the cavity unoccupied. This residual space was used to co-include planar and monocationic co-guest (CG) molecules, affording heteroternary CB[10]⋅AZAP⋅CG complexes potentially opening new perspectives in supramolecular chemistry.

4.
Angew Chem Int Ed Engl ; 60(12): 6617-6623, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33355982

RESUMEN

Molecular machines are ubiquitous in nature and function away from equilibrium by consuming fuels to produce appropriate work. Chemists have recently excelled at mimicking the fantastic job performed by natural molecular machines with synthetic systems soluble in organic solvents. In efforts toward analogous systems working in water, we show that guest molecules can be exchanged in the synthetic macrocycle cucurbit[7]uril by involving kinetic traps, and in such a way as modulating energy wells and kinetic barriers using pH, light, and redox stimuli. Ditolyl-viologen can also be exchanged using the best kinetic trap and interfaced with alginate, thus affording pH-responsive blue, fluorescent hydrogels. With tunable rate and binding constants toward relevant guests, cucurbiturils may become excellent ring molecules for the construction of advanced molecular machines working in water.

5.
Rapid Commun Mass Spectrom ; 34(14): e8815, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32311797

RESUMEN

RATIONALE: To prevent solubility issues faced with sequence-defined polyurethanes, a new family of digital polyurethanes was conceived with the alkyl coding chain held by the carbamate nitrogen (N) atom and CH3 instead of OH as the ϖ termination. This led to different dissociation mechanisms that were explored prior to optimizing tandem mass spectrometric (MS/MS) sequencing. METHODS: N-Substituted polyurethanes (N-R PUs) were dissolved in methanol and subjected to collision-induced dissociation (CID) as deprotonated chains in the negative ion mode, and as ammonium and sodium adducts in the positive ion mode, using electrospray ionization (ESI) as the ionization technique. Their dissociation behavior was thoroughly investigated using a quadrupole time-of-flight (QTOF) instrument in order to provide accurate mass measurements to support proposed fragmentation mechanisms. RESULTS: While O-(CO) bonds were broken in N-H PUs, the CH2 -O linkage between repeating units was cleaved upon CID of N-R PUs. This main process occurred either from deprotonated molecules or from cationized chains but was followed by different rearrangements, producing up to four product ion series. Yet, MS/MS spectra could be drastically simplified for precursor ions having their acidic α group methylated, as was found to spontaneously occur upon storage in methanol. CONCLUSIONS: Using experimental conditions aimed at avoiding any reactive proton in precursor ions (no acidic end-groups and alkali adduction), full coverage sequence of N-R PUs was successfully achieved with the single ion series observed in MS/MS, opening a promising perspective for reading large amounts of information stored in these dyad-encoded polymers.

6.
Angew Chem Int Ed Engl ; 59(8): 3264-3271, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31805201

RESUMEN

We report a molecular design and concept using π-system elongation and steric effects from helicenes surrounding a triphenylene core toward stable chiral polycyclic aromatic hydrocarbons (PAHs) with a maximal π-distortion to tackle their aromaticity, supramolecular and molecular properties. The selective syntheses, and the structural, conformational and chiroptical properties of two diastereomeric large multi-helicenes of formula C90 H48 having a triphenylene core and embedding three [5]helicene units on their inner edges and three [7]helicene units at their periphery are reported based on diastereoselective and, when applicable, enantiospecific Yamamoto-type cyclotrimerizations of racemic or enantiopure 9,10-dibromo[7]helicene. Both molecules have an extremely distorted triphenylene core, and one of them exhibits the largest torsion angle recorded so far for a benzene ring (twist=36.9°).

7.
J Am Chem Soc ; 141(14): 5897-5907, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30808163

RESUMEN

Triangular shapes have inspired scientists over time and are common in nature, such as the flower petals of oxalis triangularis, the triangular faces of tetrahedrite crystals, and the icosahedron faces of virus capsids. Supramolecular chemistry has enabled the construction of triangular assemblies, many of which possess functional features. Among these structures, cucurbiturils have been used to build supramolecular triangles, and we recently reported paramagnetic cucurbit[8]uril (CB[8]) triangles, but the reasons for their formation remain unclear. Several parameters have now been identified to explain their formation. At first sight, the radical nature of the guest was of prime importance in obtaining the triangles, and we focused on extending this concept to biradicals to get supramolecular hexaradicals. Two sodium ions were systematically observed by ESI-MS in trimer structures, and the presence of Na+ triggered or strengthened the triangulation of CB[8]/guest 1:1 complexes in solution. X-ray crystallography and molecular modeling have allowed the proposal of two plausible sites of residence for the two sodium cations. We then found that a diamagnetic guest with an H-bond acceptor function is equally good at forming CB[8] triangles. Hence, a guest molecule containing a ketone function has been precisely triangulated thanks to CB[8] and sodium cations as determined by DOSY-NMR and DLS. A binding constant for the triangulation of 1:1 to 3:3 complexes is proposed. This concept has finally been extended to the triangulation of ditopic guests toward network formation by the reticulation of CB[8] triangles using dinitroxide biradicals.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Modelos Moleculares , Conformación Molecular
8.
Chemistry ; 25(54): 12552-12559, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31286592

RESUMEN

A viologen derivative carrying a benzimidazole group (V-P-I 2+ ; viologen-phenylene-imidazole V-P-I) can be dimerized in water using cucurbit[8]uril (CB[8]) in the form of a 2:2 complex resulting in a negative shift of the guest pKa , by more than 1 pH unit, contrasting with the positive pKa shift usually observed for CB-based complexes. Whereas 2:2 complex protonation is unclear by NMR, silver cations have been used for probing the accessibility of the imidazole groups of the 2:2 complexes. The protonation capacity of the buried imidazole groups is reduced, suggesting that CB[8] could trigger proton release upon 2:2 complex formation. The addition of CB[8] to a solution containing V-P- I3+ indeed released protons as monitored by pH-metry and visualized by a coloured indicator. This property was used to induce a host/guest swapping, accompanied by a proton transfer, between V-P-I 3+ ⋅CB[7] and a CB[8] complex of 1-methyl-4-(4-pyridyl)pyridinium. The origin of this negative pKa shift is proposed to stand in an ideal charge state, and in the position of the two pH-responsive fragments inside the two CB[8] which, alike residues engulfed in proteins, favour the deprotonated form of the guest molecules. Such proton release triggered by a recognition event is reminiscent of several biological processes and may open new avenues toward bioinspired enzyme mimics catalyzing proton transfer or chemical reactions.

9.
Inorg Chem ; 56(9): 4864-4873, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28406618

RESUMEN

Five heteroleptic lanthanide porphyrin-bis-phthalocyanine triple-decker complexes with bulky peripheral groups were prepared via microwave-assisted synthesis and characterized in terms of their spectroscopic, electrochemical, and magnetic properties. These compounds, which were easily obtained under our preparative conditions, would normally not be accessible in large quantities using conventional synthetic methods, as a result of the low yield resulting from steric congestion of bulky groups on the periphery of the phthalocyanine and porphyrin ligands. The electrochemically investigated triple-decker derivatives undergo four reversible one-electron oxidations and three reversible one-electron reductions. The sites of oxidation and reduction were assigned on the basis of redox potentials and UV-vis spectral changes during electron-transfer processes monitored by thin-layer spectroelectrochemistry, in conjunction with assignments of electronic absorption bands of the neutral compounds. Magnetic susceptibility measurements on two derivatives containing TbIII and DyIII metal ions reveal the presence of ferromagnetic interactions, probably resulting from magnetic dipolar interactions. The TbIII derivative shows SMM behavior under an applied field of 0.1 T, where the direct and Orbach process can be determined, resulting in an energy barrier of Ueff = 132.0 K. However, Cole-Cole plots reveal the presence of two relaxation processes, the second of which takes place at higher frequencies, with the data conforming to a 1/t ∝ T7 relation, thus suggesting that it can be assigned to a Raman process. Attempts were made to form two-dimensional (2D) self-assembled networks on a highly oriented pyrolytic graphite (HOPG) surface but were unsuccessful due to bulky peripheral groups on the two Pc macrocycles.

10.
Chemistry ; 21(46): 16404-10, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26403999

RESUMEN

Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7) M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed.

11.
Rapid Commun Mass Spectrom ; 29(23): 2302-8, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26522324

RESUMEN

RATIONALE: In order to prevent side reactions while developing new polymerization processes, their mechanism has to be understood and one first key insight is the structure of the end-groups in polymeric by-products. The synthetic method scrutinized here is the nitroxide-mediated polymerization (NMP) of a cyclic ketene acetal, a promising alternative process to the production of polyesters. METHODS: Polymer end-group characterization was performed by mass spectrometry (MS), combining elemental composition information derived from accurate mass data in the MS mode with fragmentation features recorded in the MS/MS mode. Electrospray was used as the ionization method to ensure the integrity of original chain terminations and a quadrupole time-of-flight (QTOF) instrument was employed for high-resolution mass measurements in both MS and tandem mass spectrometry (MS/MS) modes. RESULTS: Occurrence of side reactions in the studied polymerization method, first evidenced by an unusual increase in dispersity with conversion, was confirmed in MS with the detection of two polymeric impurities in addition to the expected species. Fragmentation rules were first established for this new polyester family in order to derive useful structural information from MS/MS data. In addition to a usual NMP by-product, the initiating group of the second polymeric impurities revealed the degradation of the nitroxide moiety. CONCLUSIONS: Unambiguous MS/MS identification of end-groups in by-products sampled from the polymerization medium allowed an unusual side reaction to be identified during the NMP preparation of polyesters. On-going optimization of the polymerization method aims at preventing this undesired process.

12.
Chirality ; 27(10): 716-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26415851

RESUMEN

The title compound was obtained as a side product during dimerization-oxidation steps of the carbene generated from N-methylbenzothiazolium iodide. Chromatography on (S,S)-Whelk O1 column showed on cooling a typical plateau shape chromatogram indicating an exchange between two enantiomers on the column. The thermal barrier to racemization was determined (85 kJ.mol(-1) at 10 °C) by dynamic high-performance liquid chromatography (DHPLC).The absolute configuration of the first (M) and second eluted (P) enantiomers on the (S, S)-Whelk O1 column was established by comparing the reconstructed circular dichroism (CD) spectra from the CD detector signal and the calculated CD spectrum of the (P) enantiomer. Mass spectrometry revealed that 3,3'-dimethyl-3H,3'H-2,2'-spirobi[[1,3]benzothiazole] can be viewed as a masked thiophenate attached to a benzothiazolium framework.

13.
J Am Chem Soc ; 136(50): 17570-7, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25418528

RESUMEN

The flexible tetranitroxide 4T has been prepared and was shown to exhibit a nine line EPR spectrum in water, characteristic of significant through space spin exchange (J(ij)) between four electron spins interacting with four nitrogen nuclei (J(ij) ≫ a(N)). Addition of CB[8] to 4T decreases dramatically all the Jij couplings, and the nine line spectrum is replaced by the characteristic three line spectrum of a mononitroxide. The supramolecular association between 4T and CB[8] involves a highly cooperative asymmetric complexation by two CB[8] (K1 = 4027 M(-1); K2 = 202,800 M(-1); α = 201) leading to a rigid complex with remote nitroxide moieties. The remarkable enhancement for the affinity of the second CB[8] corresponds to an allosteric interaction energy of ≈13 kJ mol(-1), which is comparable to that of the binding of oxygen by hemoglobin. These results are confirmed by competition and reduction experiments, DFT and molecular dynamics calculations, mass spectrometry, and liquid state NMR of the corresponding reduced complex bearing hydroxylamine moieties. This study shows that suitably designed molecules can generate allosteric complexation with CB[8]. The molecule must (i) carry several recognizable groups for CB[8] and (ii) be folded so that the first binding event reorganizes the molecule (unfold) for a better subsequent recognition. The presence of accessible protonable amines and H-bond donors to fit with the second point are also further stabilizing groups of CB[8] complexation. In these conditions, the spin exchange coupling between four radicals has been efficiently and finely tuned and the resulting allosteric complexation induced a dramatic stabilization enhancement of the included paramagnetic moieties in highly reducing conditions through the formation of the supramolecular 4T@CB[8]2 complex.


Asunto(s)
Sitio Alostérico , Óxidos N-Cíclicos/química , Óxido Nítrico/química , Receptores Artificiales/química , Agua/química , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares
14.
J Med Chem ; 66(13): 8844-8857, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37339060

RESUMEN

Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.


Asunto(s)
Compuestos Macrocíclicos , Péptidos , Hidrocarburos Aromáticos con Puentes/farmacología , Sistemas de Liberación de Medicamentos , Péptidos/química , Receptores de LDL/metabolismo
15.
Chemistry ; 18(25): 7916-24, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22573602

RESUMEN

A sample pretreatment was evaluated to enable the production of intact cationic species of synthetic polymers holding a labile end-group using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. More specifically, polymers obtained by nitroxide-mediated polymerization involving the MAMA-SG1 alkoxyamine were stirred for a few hours in trifluoroacetic acid (TFA) to induce the substitution of a tert-butyl group on the nitrogen of nitroxide end-group by a hydrogen atom. Nuclear magnetic resonance, electrospray ionization tandem mass spectrometry, and theoretical calculations were combined to scrutinize this sample pretreatment from both mechanistic and energetic points of view. The substitution reaction was found to increase the dissociation energy of the fragile C-ON bond to a sufficient extent to prevent this bond to be spontaneously cleaved during MALDI analysis. This TFA treatment is shown to be very efficient regardless of the nature of the polymer, as evidenced by reliable MALDI mass spectrometric data obtained for poly(ethylene oxide), polystyrene and poly(butylacrylate).

16.
Front Chem ; 9: 740495, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568285

RESUMEN

Matrix-assisted laser/desorption ionization (MALDI) has become a very popular ionization technique for mass spectrometry of synthetic polymers because it allows high throughput analysis of low amounts of sample while avoiding the complexity introduced by extensive multiple charging of electrospray ionization. Yet, fundamental mechanisms underlying this ionization process are not fully understood, so development of sample preparation methods remains empirical. Reliable prediction for the optimal matrix/analyte/salt system is indeed still not possible for homopolymers and it becomes even more challenging in the case of amphiphilic block copolymers where conditions dictated by one block are not compatible with MALDI requirements of the second block. In order to perform MALDI of copolymers composed of poly (ethylene oxide) (PEO) and polystyrene (PS) blocks, it was postulated here that experimental conditions suitable for both species would also be successful for PEO-b-PS. Accordingly, designs of experiments based on Quantitative Structure Activity Relationship (QSAR) analysis were first implemented, studying the influence of 19 matrices and 26 salts on the laser fluence requested for successful MALDI. This analysis first permitted to highlight correlations between the investigated 10 descriptors of matrices and salts and the analytical response, and then to construct models that permits reliable predictions of matrix/salt couples to be used for one or the other homopolymer. Selected couples were then used for MALDI of a PEO-b-PS copolymer but no general trend was observed: experimental conditions expected to work often failed whereas ionic adducts of the copolymer were clearly detected with some matrix/salt systems that were shown to badly perform for constituting homopolymers. Overall, this rules out the working assumption stating that the MALDI behavior of chains composed of PEO and PS segments should combine the behavior of the two polymeric species. Yet, although requiring a dedicated design of experiments, MALDI of the amphiphilic PEO-b-PS copolymer was achieved for the first time.

17.
Org Lett ; 23(11): 4332-4336, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33999644

RESUMEN

The stereocontrol of tertiary alcohols represents a recurrent challenge in organic synthesis. In the present paper, we describe a simple, efficient, and indirect method to enantioselectively prepare tertiary alcohols through a chiral isothiourea catalyzed selective acylation of adjacent secondary alcohols. This transformation enables the kinetic resolution (KR) of easily prepared racemic diastereoenriched secondary/tertiary diols providing both monoesters and starting diols in highly enantioenriched forms (s-value >200).

18.
Org Lett ; 23(14): 5283-5287, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-33851849

RESUMEN

A viologen-phenylene-imidazole (VPI) conjugate, previously shown to be singly complexed by CB[7] and doubly bound by CB[8], is herein shown to form antiparallel triple stacks in water with cucurbit[10]uril (CB[10]), pairwise complexing the guest trimer. The quinary host:guest 2:3 complex showed features assignable to charge-transfer interactions. Under reductive conditions, CB[10] could solubilize a VPI radical, even though CB[10] and reduced VPI are almost insoluble, thereby illustrating a possible new application for CB[10].

19.
J Org Chem ; 75(24): 8685-8, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21082842

RESUMEN

A novel strategy for the synthesis of poly(amino)ester dendrimers was developed on the basis of active cyanomethyl ester intermediates and an iteration of four consecutive steps of deprotection, activation, transesterification, and scavenging.


Asunto(s)
Dendrímeros/síntesis química , Nitrilos/química , Poliaminas/síntesis química , Dendrímeros/química , Esterificación , Ésteres , Estructura Molecular , Poliaminas/química
20.
Rapid Commun Mass Spectrom ; 24(15): 2207-16, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20583324

RESUMEN

An acid-terminated poly(amino)ester dendrimer was studied by electrospray ionization tandem mass spectrometry to establish its fragmentation pathways, with the aim of using them to investigate the structure of any defective molecules generated during the dendrimer synthesis. This poly(amino)ester dendrimer could be ionized in both polarities but the most structurally relevant dissociation pathways were found from the deprotonated molecule in negative ion mode. The dissociation pattern of this dendrimer is fully described and supported by accurate mass measurements. The main dissociation reactions of the negatively charged polyacidic dendrimer were shown to consist of (i) the release of carbon dioxide and ethene within a branch, which proceeds as many times as intact neutral branches are available; and (ii) the elimination of an entire dendrimer arm. Monitoring the occurrence of these reactions together with any deviation from these two main routes allowed six major dendritic impurities to be structurally characterized.


Asunto(s)
Dendrímeros/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Dendrímeros/síntesis química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA