Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol ; 96(4): 815-825, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31912514

RESUMEN

In this work, the flavonol fisetin was selected in order to study its reactivity against Cu(II), a metal ion of interest in biological media and industry. The stoichiometry and apparent formation constant of the complex in ethanolic medium at 25°C were evaluated using spectrophotometric techniques. The resulting stoichiometry was a 1:1 ligand:metal complex, and a log K = 5.17 ± 0.12 was determined. Since two possible chelation sites can be proposed for the complex formation, quantum chemistry calculations were performed on these structures. Calculations suggest that the hydroxyl-keto site is more stable for the complex formation than the catechol site. Flavonoids could exert protection against oxidative damage caused by reactive oxygen species, and this biological activity could be affected by chelation with metal ions. This led us to perform a study on the interaction of both, free flavonoid and complex, with reactive oxygen species. Our results showed both compounds quench molecular singlet oxygen photogenerated with visible light, mainly in a physical fashion. In order to analyze a possible protective effect of flavonoid and its complex against oxidative damage in biological environments, the amino acid tryptophan was selected as a model oxidation system. Free flavonoid does not have a marked protective effect, whereas its complex showed a relevant protective effect.

2.
Photochem Photobiol ; 85(5): 1097-102, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19500293

RESUMEN

Considering the significance of visible light-promoted reactions in complex biological media, the photo-oxidation of the amino acids (AAs) tyrosine (tyr) and tryptophan (trp) was studied in the presence of the naturally occurring oxidative scavenger uracil (ur). The involved photoprocesses, studied at pH 7 and 9, are driven through the reactive oxygen species (ROS) singlet molecular oxygen (O2(1Deltag)), superoxide radical anion (O2*-) and hydrogen peroxide (H2O2). The effect on the effectiveness of the overall photo-oxidation process due to the presence of an added electron-donating substrate such as ur is not straightforwardly predictable. The addition of the pyrimidine compound, a much lesser photo-oxidizable substrate than the AAs themselves, produced different results: (1) antioxidative for tyr at pH 9, decreasing the overall rate of oxygen uptake; (2) synergistic for tyr at pH 7, increasing the oxidation rate more than the corresponding addition value of the respective individual rates and (3) no effect for trp at both pH values. The final result depends on the respective abilities of the substrates as quenchers of both the long-lived riboflavin triplet excited state and the generated ROS and the pH of the medium. An interpretation for the different cases is attempted through a kinetic and mechanistic analysis.


Asunto(s)
Oxígeno/química , Riboflavina/química , Triptófano/química , Tirosina/química , Uracilo/química , Cinética , Oxidación-Reducción , Fotoquímica
3.
Photochem Photobiol ; 94(6): 1124-1128, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30421800

RESUMEN

The Photochemical Research Group from San Luis (Argentina) highlights the contributions of Dr. Norman Andino García to the development of the group as a way to show him our gratitude for all his support.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA