Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(18): e202303570, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38018494

RESUMEN

NMR spectroscopy techniques can provide important information about protein-ligand interactions. Here we tested an NMR approach which relies on the measurement of paramagnetic relaxation enhancements (PREs) arising from analogous cationic, anionic or neutral soluble nitroxide molecules, which distribute around the protein-ligand complex depending on near-surface electrostatic potentials. We applied this approach to two protein-ligand systems, interleukin-8 interacting with highly charged glycosaminoglycans and the SH2 domain of Grb2 interacting with less charged phospho-tyrosine tripeptides. The electrostatic potential around interleukin-8 and its changes upon binding of glycosaminoglycans could be derived from the PRE data and confirmed by theoretical predictions from Poisson-Boltzmann calculations. The ligand influence on the PREs and NMR-derived electrostatic potentials of Grb2 SH2 was localized to a narrow protein region which allowed the localization of the peptide binding pocket. Our analysis suggests that experiments with nitroxide cosolutes can be useful for investigating protein-ligand electrostatic interactions and mapping ligand binding sites.


Asunto(s)
Glicosaminoglicanos , Interleucina-8 , Óxidos de Nitrógeno , Ligandos , Sitios de Unión
2.
Chemistry ; 29(4): e202202766, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36279320

RESUMEN

The plasma membrane is a complex assembly of proteins and lipids that can self-assemble in submicroscopic domains commonly termed "lipid rafts", which are implicated in membrane signaling and trafficking. Recently, photo-sensitive lipids were introduced to study membrane domain organization, and photo-isomerization was shown to trigger the mixing and de-mixing of liquid-ordered (lo ) domains in artificial phase-separated membranes. Here, we synthesized globotriaosylceramide (Gb3 ) glycosphingolipids that harbor an azobenzene moiety at different positions of the fatty acid to investigate light-induced membrane domain reorganization, and that serve as specific receptors for the protein Shiga toxin (STx). Using phase-separated supported lipid bilayers on mica surfaces doped with four different photo-Gb3 molecules, we found by fluorescence microscopy and atomic force microscopy that liquid disordered (ld ) domains were formed within lo domains upon trans-cis photo-isomerization. The fraction and size of these ld domains were largest for Gb3 molecules with the azobenzene group at the end of the fatty acid. We further investigated the impact of domain reorganization on the interaction of the B-subunits of STx with the photo-Gb3 . Fluorescence and atomic force micrographs clearly demonstrated that STxB binds to the lo phase if Gb3 is in the trans-configuration, whereas two STxB populations are formed if the photo-Gb3 is switched to the cis-configuration highlighting the idea of manipulating lipid-protein interactions with a light stimulus.


Asunto(s)
Membrana Dobles de Lípidos , Toxina Shiga , Toxina Shiga/metabolismo , Isomerismo , Membrana Dobles de Lípidos/metabolismo , Ácidos Grasos
3.
Angew Chem Int Ed Engl ; 59(52): 23854-23861, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32790043

RESUMEN

Dynamic structural transitions within the seven-transmembrane bundle represent the mechanism by which G-protein-coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist-, and arrestin-bound states of Y2R were prepared by cell-free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were 13 C-labeled. NMR-signal assignment was achieved by dynamic-nuclear-polarization enhancement and the individual functional states of the receptor were characterized by monitoring 13 C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp2816.48 of the highly conserved SWLP motif and Trp3277.55 adjacent to the NPxxY motif. Furthermore, a conformationally preserved "cysteine lock"-Trp11623.50 was identified.


Asunto(s)
Receptores de Neuropéptido Y/química , Humanos , Modelos Moleculares , Conformación Molecular
4.
Protein Expr Purif ; 76(1): 25-35, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21055472

RESUMEN

The recombinant expression of human G protein-coupled receptors usually yields low production levels using commonly available cultivation protocols. Here, we describe the development of a high yield production protocol for the human neuropeptide Y receptor type 2 (Y2R), which provides the determination of expression levels in a time, media composition, and process parameter dependent manner. Protein was produced by Escherichia coli in a defined medium composition suitable for isotopic labeling required for investigations by nuclear magnetic resonance spectroscopy. The Y2 receptor was fused to a C-terminal 8x histidine tag by means of the pET vector system for easy one-step purification via affinity chromatography, yielding a purity of 95-99% for every condition tested, which was determined by SDS-PAGE and Western blot analysis. The Y2 receptor was expressed as inclusion body aggregates in complex media and minimal media, using different carbon sources. We investigated the influences of media composition, temperature, pH, and set specific growth rate on cell behavior, biomass wet weight specific and culture volume specific amounts of the target protein, which had been identified by inclusion body preparation, solubilization, followed by purification and spectrometric determination of the protein concentration. The developed process control strategy led to very high reproducibility of cell growth and protein concentrations with a maximum yield of 800 µg purified Y2 receptor per gram wet biomass when glycerol was used as carbon source in the mineral salt medium composition (at 38 °C, pH 7.0, and a set specific growth rate of 0.14 g/(gh)). The maximum biomass specific amount of purified Y2 receptor enabled the production of 35 mg Y2R per liter culture medium at an optical density (600 nm) of 25.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Receptores de Neuropéptido Y/biosíntesis , Proteínas Recombinantes/biosíntesis , Medios de Cultivo , Técnicas de Cultivo , Fermentación , Humanos , Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular , Receptores de Neuropéptido Y/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación
5.
Biochim Biophys Acta ; 1778(4): 1027-34, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18178148

RESUMEN

In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.


Asunto(s)
Modelos Biológicos , Oxidorreductasas/metabolismo , Transición de Fase , Fosfatidiletanolaminas/metabolismo , Spinacia oleracea/enzimología , Metabolismo de los Lípidos , Espectroscopía de Resonancia Magnética , Solubilidad , Temperatura , Xantófilas/metabolismo
6.
Biotechnol Prog ; 25(6): 1732-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19725122

RESUMEN

G protein-coupled receptors (GPCRs) are a class of membrane proteins that represent a major target for pharmacological developments. However, there is still little knowledge about GPCR structure and dynamics since high-level expression and characterization of active GPCRs in vitro is extremely complicated. Here, we describe the recombinant expression and functional folding of the human Y(2) receptor from inclusion bodies of E. coli cultures. Milligram protein quantities were produced using high density fermentation and isolated in a single step purification with a yield of over 20 mg/L culture. Extensive studies were carried out on in vitro refolding and stabilization of the isolated receptor in detergent solution. The specific binding of the ligand, the 36 residue neuropeptide Y (NPY), to the recombinant Y(2) receptors in micellar form was shown by several radioligand affinity assays. In competition experiments, an IC(50) value in low nanomolar range could be determined. Further, a K(D) value of 1.9 nM was determined from a saturation assay, where NPY was titrated to the recombinant Y(2) receptors.


Asunto(s)
Receptores de Neuropéptido Y/biosíntesis , Receptores de Neuropéptido Y/química , Secuencia de Aminoácidos , Unión Competitiva , Escherichia coli/genética , Humanos , Micelas , Modelos Moleculares , Datos de Secuencia Molecular , Neuropéptido Y/metabolismo , Unión Proteica , Pliegue de Proteína , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA