Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Mol Cell Cardiol ; 185: 26-37, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797718

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiac disease. Up to 40% of cases are associated with heterozygous mutations in myosin binding protein C (cMyBP-C, MYBPC3). Most of these mutations lead to premature termination codons (PTC) and patients show reduction of functional cMyBP-C. This so-called haploinsufficiency most likely contributes to disease development. We analyzed mechanisms underlying haploinsufficiency using cardiac tissue from HCM-patients with truncation mutations in MYBPC3 (MYBPC3trunc). We compared transcriptional activity, mRNA and protein expression to donor controls. To differentiate between HCM-specific and general hypertrophy-induced mechanisms we used patients with left ventricular hypertrophy due to aortic stenosis (AS) as an additional control. We show that cMyBP-C haploinsufficiency starts at the mRNA level, despite hypertrophy-induced increased transcriptional activity. Gene set enrichment analysis (GSEA) of RNA-sequencing data revealed an increased expression of NMD-components. Among them, Up-frameshift protein UPF3B, a regulator of NMD was upregulated in MYBPC3trunc patients and not in AS-patients. Strikingly, we show that in sarcomeres UPF3B but not UPF1 and UPF2 are localized to the Z-discs, the presumed location of sarcomeric protein translation. Our data suggest that cMyBP-C haploinsufficiency in HCM-patients is established by UPF3B-dependent NMD during the initial translation round at the Z-disc.


Asunto(s)
Cardiomiopatía Hipertrófica , Miocitos Cardíacos , Humanos , Cardiomiopatía Hipertrófica/metabolismo , Haploinsuficiencia , Hipertrofia/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Pflugers Arch ; 471(5): 719-733, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30740621

RESUMEN

Hypertrophic cardiomyopathy (HCM) is mainly caused by mutations in sarcomeric proteins. Thirty to forty percent of identified mutations are found in the ventricular myosin heavy chain (ß-MyHC). A common mechanism explaining how numerous mutations in several different proteins induce a similar HCM-phenotype is unclear. It was proposed that HCM-mutations cause hypercontractility, which for some mutations is thought to result from mutation-induced unlocking of myosin heads from a so-called super-relaxed state (SRX). The SRX was suggested to be related to the "interacting head motif," i.e., pairs of myosin heads folded back onto their S2-region. Here, we address these structural states of myosin in context of earlier work on weak binding cross-bridges. However, not all HCM-mutations cause hypercontractility and/or are involved in the interacting head motif. But most likely, all mutations alter the force generating mechanism, yet in different ways, possibly including inhibition of SRX. Such functional-hyper- and hypocontractile-changes are the basis of our previously proposed concept stating that contractile imbalance due to unequal fractions of mutated and wildtype protein among individual cardiomyocytes over time will induce cardiomyocyte disarray and fibrosis, hallmarks of HCM. Studying ß-MyHC-mutations, we found substantial contractile variability from cardiomyocyte to cardiomyocyte within a patient's myocardium, much higher than in controls. This was paralleled by a similarly variable fraction of mutant MYH7-mRNA (cell-to-cell allelic imbalance), due to random, burst-like transcription, independent for mutant and wildtype MYH7-alleles. Evidence suggests that HCM-mutations in other sarcomeric proteins follow the same disease mechanism.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Desequilibrio Alélico , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Humanos , Mutación , Miocitos Cardíacos/fisiología
3.
J Muscle Res Cell Motil ; 38(3-4): 291-302, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29101517

RESUMEN

HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the ß-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.


Asunto(s)
Alelos , Desequilibrio Alélico , Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Regulación Enzimológica de la Expresión Génica , Cadenas Pesadas de Miosina , Sarcómeros , Adulto , Miosinas Cardíacas/biosíntesis , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/patología
4.
J Physiol ; 592(15): 3257-72, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24928957

RESUMEN

The first mutation associated with hypertrophic cardiomyopathy (HCM) is the R403Q mutation in the gene encoding ß-myosin heavy chain (ß-MyHC). R403Q locates in the globular head of myosin (S1), responsible for interaction with actin, and thus motor function of myosin. Increased cross-bridge relaxation kinetics caused by the R403Q mutation might underlie increased energetic cost of tension generation; however, direct evidence is absent. Here we studied to what extent cross-bridge kinetics and energetics are related in single cardiac myofibrils and multicellular cardiac muscle strips of three HCM patients with the R403Q mutation and nine sarcomere mutation-negative HCM patients (HCMsmn). Expression of R403Q was on average 41 ± 4% of total MYH7 mRNA. Cross-bridge slow relaxation kinetics in single R403Q myofibrils was significantly higher (P < 0.0001) than in HCMsmn myofibrils (0.47 ± 0.02 and 0.30 ± 0.02 s(-1), respectively). Moreover, compared to HCMsmn, tension cost was significantly higher in the muscle strips of the three R403Q patients (2.93 ± 0.25 and 1.78 ± 0.10 µmol l(-1) s(-1) kN(-1) m(-2), respectively) which showed a positive linear correlation with relaxation kinetics in the corresponding myofibril preparations. This correlation suggests that faster cross-bridge relaxation kinetics results in an increase in energetic cost of tension generation in human HCM with the R403Q mutation compared to HCMsmn. Therefore, increased tension cost might contribute to HCM disease in patients carrying the R403Q mutation.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/fisiopatología , Relajación Muscular , Contracción Miocárdica , Cadenas Pesadas de Miosina/genética , Sarcómeros/fisiología , Adenosina Trifosfato/metabolismo , Adulto , Anciano , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Cadenas Pesadas de Miosina/metabolismo , Sarcómeros/metabolismo
5.
BMC Genomics ; 15: 434, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24898206

RESUMEN

BACKGROUND: Prion diseases are fatal neurodegenerative disorders whose pathogenesis mechanisms are not fully understood. In this context, the analysis of gene expression alterations occurring in prion-infected animals represents a powerful tool that may contribute to unravel the molecular basis of prion diseases and therefore discover novel potential targets for diagnosis and therapeutics. Here we present the first large-scale transcriptional profiling of brains from BSE-infected cynomolgus macaques, which are an excellent model for human prion disorders. RESULTS: The study was conducted using the GeneChip® Rhesus Macaque Genome Array and revealed 300 transcripts with expression changes greater than twofold. Among these, the bioinformatics analysis identified 86 genes with known functions, most of which are involved in cellular development, cell death and survival, lipid homeostasis, and acute phase response signaling. RT-qPCR was performed on selected gene transcripts in order to validate the differential expression in infected animals versus controls. The results obtained with the microarray technology were confirmed and a gene signature was identified. In brief, HBB and HBA2 were down-regulated in infected macaques, whereas TTR, APOC1 and SERPINA3 were up-regulated. CONCLUSIONS: Some genes involved in oxygen or lipid transport and in innate immunity were found to be dysregulated in prion infected macaques. These genes are known to be involved in other neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Our results may facilitate the identification of potential disease biomarkers for many neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Encefalopatía Espongiforme Bovina/genética , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/veterinaria , Animales , Secuencia de Bases , Bovinos , Inmunidad Innata , Lípidos/fisiología , Macaca fascicularis , Datos de Secuencia Molecular , Oxígeno/metabolismo
6.
J Mol Cell Cardiol ; 57: 13-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23318932

RESUMEN

Familial Hypertrophic Cardiomyopathy (FHC) is frequently caused by mutations in the ß-cardiac myosin heavy chain (ß-MyHC). To identify changes in sarcomeric function triggered by such mutations, distinguishing mutation effects from other functional alterations of the myocardium is essential. We previously identified a direct effect of mutation R723G (MyHC723) on myosin function in slow Musculus soleus fibers. Here we investigate contractile features of left ventricular cardiomyocytes of FHC-patients with the same MyHC723-mutation and compare these to the soleus data. In mechanically isolated, triton-permeabilized MyHC723-cardiomyocytes, maximum force was significantly lower but calcium-sensitivity was unchanged compared to donor. Conversely, MyHC723-soleus fibers showed significantly higher maximum force and reduced calcium-sensitivity compared to controls. Protein phosphorylation, a potential myocardium specific modifying mechanism, might account for differences compared to soleus fibers. Analysis revealed reduced phosphorylation of troponin I and T, myosin-binding-protein C, and myosin-light-chain 2 in MyHC723-myocardium compared to donor. Saturation of protein-kinaseA phospho-sites led to comparable, i.e., reduced MyHC723-calcium-sensitivity in cardiomyocytes as in M. soleus fibers, while maximum force remained reduced. Myofibrillar disarray and lower density of myofibrils, however, largely account for reduced maximum force in MyHC723-cardiomyocytes. The changes seen when phosphorylation of sarcomeric proteins in myocardium of affected patients is matched to control tissue suggest that the R723G mutation causes reduced Ca(++)-sensitivity in both cardiomyocytes and M. soleus fibers. In MyHC723-myocardium, however, hypophosphorylation can compensate for the reduced calcium-sensitivity, while maximum force generation, lowered by myofibrillar deficiency and disarray, remains impaired, and may only be compensated by hypertrophy.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica Familiar/genética , Mutación Missense , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Adulto , Calcio/fisiología , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Femenino , Expresión Génica , Ventrículos Cardíacos/patología , Humanos , Contracción Isométrica , Masculino , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Cadenas Pesadas de Miosina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcómeros/metabolismo , Troponina/metabolismo , Adulto Joven
7.
Emerg Infect Dis ; 19(7): 1125-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23764183

RESUMEN

To estimate the effect of the variability of prion disease onset on primary bovine spongiform encephalopathy transmission to humans, we studied 6 cynomolgus macaques. The preclinical incubation period was significantly prolonged in 2 animals, implying that onset of variant Creutzfeldt-Jacob disease in humans could be more diverse than previously expected.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/patología , Encefalopatía Espongiforme Bovina/patología , Animales , Encéfalo/metabolismo , Bovinos , Síndrome de Creutzfeldt-Jakob/metabolismo , Progresión de la Enfermedad , Encefalopatía Espongiforme Bovina/metabolismo , Femenino , Humanos , Macaca fascicularis , Proteínas PrPSc/metabolismo
9.
J Gen Physiol ; 155(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37656049

RESUMEN

Myosin heavy chain (MyHC) is the main determinant of contractile function. Human ventricular cardiomyocytes (CMs) predominantly express the ß-isoform. We previously demonstrated that ∼80% of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) express exclusively ß-MyHC after long-term culture on laminin-coated glass coverslips. Here, we investigated the impact of enzymatically detaching hESC-CMs after long-term culture and subsequently replating them for characterization of cellular function. We observed that force-related kinetic parameters, as measured in a micromechanical setup, resembled α- rather than ß-MyHC-expressing myofibrils, as well as changes in calcium transients. Single-cell immunofluorescence analysis revealed that replating hESC-CMs led to rapid upregulation of α-MyHC, as indicated by increases in exclusively α-MyHC- and in mixed α/ß-MyHC-expressing hESC-CMs. A comparable increase in heterogeneity of MyHC isoform expression was also found among individual human induced pluripotent stem cell (hiPSC)-derived CMs after replating. Changes in MyHC isoform expression and cardiomyocyte function induced by replating were reversible in the course of the second week after replating. Gene enrichment analysis based on RNA-sequencing data revealed changes in the expression profile of mechanosensation/-transduction-related genes and pathways, especially integrin-associated signaling. Accordingly, the integrin downstream mediator focal adhesion kinase (FAK) promoted ß-MyHC expression on a stiff matrix, further validating gene enrichment analysis. To conclude, detachment and replating induced substantial changes in gene expression, MyHC isoform composition, and function of long-term cultivated human stem cell-derived CMs, thus inducing alterations in mechanosensation/-transduction, that need to be considered, particularly for downstream in vitro assays.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miosinas , Cadenas Pesadas de Miosina/genética , Integrinas
10.
BMC Genomics ; 13: 486, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22985096

RESUMEN

BACKGROUND: Prion diseases are neurodegenerative diseases that are characterized by the conversion of the cellular prion protein (PrPc) into a pathogenic isoform (PrPSc). It is known that neurodegeneration is often accompanied by the disturbance of cholesterol homeostasis. We have recently identified a set of genes that were upregulated after prion infection of N2a neuronal cells (Bach et al., 2009). RESULTS: We have now used ultra-deep sequencing technology to profile all microRNAs (miRNA) that could be associated with this effect in these N2a cells. Using stringent filters and normalization strategies we identified a small set of miRNAs that were up- or downregulated upon prion infection. Using bioinformatic tools we predicted whether the downregulated miRNAs could target mRNAs that have been previously identified to enhance cholesterol synthesis in these cells. Application of this joint profiling approach revealed that nine miRNAs potentially target cholesterol-related genes. Four of those miRNAs are localized in a miRNA-dense cluster on the mouse X-chromosome. Among these, twofold downregulation of mmu-miR-351 and mmu-miR-542-5p was confirmed by qRT-PCR. The same miRNAs were predicted as putative regulators of the sterol regulatory element-binding factor 2 (Srebf2), the low-density lipoprotein receptor (Ldlr) or the IPP isomerase. CONCLUSIONS: The results demonstrate that joined profiling by ultra-deep sequencing is highly valuable to identify candidate miRNAs involved in prion-induced dysregulation of cholesterol homeostasis.


Asunto(s)
Colesterol/metabolismo , MicroARNs/genética , Priones/genética , Isoformas de Proteínas/genética , Animales , Línea Celular , Secuenciación de Nucleótidos de Alto Rendimiento , Homeostasis/genética , Ratones , Priones/metabolismo
11.
Front Cardiovasc Med ; 9: 987889, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082122

RESUMEN

Transcriptional bursting is a common expression mode for most genes where independent transcription of alleles leads to different ratios of allelic mRNA from cell to cell. Here we investigated burst-like transcription and its consequences in cardiac tissue from Hypertrophic Cardiomyopathy (HCM) patients with heterozygous mutations in the sarcomeric proteins cardiac myosin binding protein C (cMyBP-C, MYBPC3) and cardiac troponin I (cTnI, TNNI3). Using fluorescence in situ hybridization (RNA-FISH) we found that both, MYBPC3 and TNNI3 are transcribed burst-like. Along with that, we show unequal allelic ratios of TNNI3-mRNA among single cardiomyocytes and unequally distributed wildtype cMyBP-C protein across tissue sections from heterozygous HCM-patients. The mutations led to opposing functional alterations, namely increasing (cMyBP-Cc.927-2A>G) or decreasing (cTnIR145W) calcium sensitivity. Regardless, all patients revealed highly variable calcium-dependent force generation between individual cardiomyocytes, indicating contractile imbalance, which appears widespread in HCM-patients. Altogether, we provide strong evidence that burst-like transcription of sarcomeric genes can lead to an allelic mosaic among neighboring cardiomyocytes at mRNA and protein level. In HCM-patients, this presumably induces the observed contractile imbalance among individual cardiomyocytes and promotes HCM-development.

12.
Basic Res Cardiol ; 106(6): 1041-55, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21769673

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease, which in about 30% of the patients is caused by missense mutations in one allele of the ß-myosin heavy chain (ß-MHC) gene (MYH7). To address potential molecular mechanisms underlying the family-specific prognosis, we determined the relative expression of mutant versus wild-type MYH7-mRNA. We found a hitherto unknown mutation-dependent unequal expression of mutant to wild-type MYH7-mRNA, which is paralleled by similar unequal expression of ß-MHC at the protein level. Relative abundance of mutated versus wild-type MYH7-mRNA was determined by a specific restriction digest approach and by real-time PCR (RT-qPCR). Fourteen samples from M. soleus and myocardium of 12 genotyped and clinically well-characterized FHC patients were analyzed. The fraction of mutated MYH7-mRNA in five patients with mutation R723G averaged to 66 and 68% of total MYH7-mRNA in soleus and myocardium, respectively. For mutations I736T, R719W and V606M, fractions of mutated MYH7-mRNA in M. soleus were 39, 57 and 29%, respectively. For all mutations, unequal abundance was similar at the protein level. Importantly, fractions of mutated transcripts were comparable among siblings, in younger relatives and unrelated carriers of the same mutation. Hence, the extent of unequal expression of mutated versus wild-type transcript and protein is characteristic for each mutation, implying cis-acting regulatory mechanisms. Bioinformatics suggest mRNA stability or splicing effectors to be affected by certain mutations. Intriguingly, we observed a correlation between disease expression and fraction of mutated mRNA and protein. This strongly suggests that mutation-specific allelic imbalance represents a new pathogenic factor for FHC.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Miosinas Ventriculares/genética , Adulto , Alelos , Desequilibrio Alélico , Análisis Mutacional de ADN , Genotipo , Humanos , Persona de Mediana Edad , Mutación Missense , Linaje , Estabilidad del ARN , ARN Mensajero/análisis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
13.
Biophys Rev ; 12(4): 1055-1064, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32661905

RESUMEN

Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disease, is caused by several mostly heterozygous mutations in sarcomeric genes. Hallmarks of HCM are cardiomyocyte and myofibrillar disarray and hypertrophy and fibrosis of the septum and the left ventricle. To date, a pathomechanism common to all mutations remains elusive. We have proposed that contractile imbalance, an unequal force generation of neighboring cardiomyocytes, may contribute to development of HCM hallmarks. At the same calcium concentration, we found substantial differences in force generation between individual cardiomyocytes from HCM patients with mutations in ß-MyHC (ß-myosin heavy chain). Variability among cardiomyocytes was significantly larger in HCM patients as compared with donor controls. We assume that this heterogeneity in force generation among cardiomyocytes may lead to myocardial disarray and trigger hypertrophy and fibrosis. We provided evidence that burst-like transcription of the MYH7-gene, encoding for ß-MyHC, is associated with unequal fractions of mutant per wild-type mRNA from cell to cell (cell-to-cell allelic imbalance). This will presumably lead to unequal fractions of mutant per wild-type protein from cell to cell which may underlie contractile imbalance. In this review, we discuss molecular mechanisms of burst-like transcription with regard to contractile imbalance and disease development in HCM.

14.
Genes (Basel) ; 9(6)2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899280

RESUMEN

During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene (GMNN). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9-GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9-GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.

15.
Front Physiol ; 9: 359, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686627

RESUMEN

Hypertrophic Cardiomyopathy (HCM) has been related to many different mutations in more than 20 different, mostly sarcomeric proteins. While development of the HCM-phenotype is thought to be triggered by the different mutations, a common mechanism remains elusive. Studying missense-mutations in the ventricular beta-myosin heavy chain (ß-MyHC, MYH7) we hypothesized that significant contractile heterogeneity exists among individual cardiomyocytes of HCM-patients that results from cell-to-cell variation in relative expression of mutated vs. wildtype ß-MyHC. To test this hypothesis, we measured force-calcium-relationships of cardiomyocytes isolated from myocardium of heterozygous HCM-patients with either ß-MyHC-mutation Arg723Gly or Arg200Val, and from healthy controls. From the myocardial samples of the HCM-patients we also obtained cryo-sections, and laser-microdissected single cardiomyocytes for quantification of mutated vs. wildtype MYH7-mRNA using a single cell RT-qPCR and restriction digest approach. We characterized gene transcription by visualizing active transcription sites by fluorescence in situ hybridization of intronic and exonic sequences of MYH7-pre-mRNA. For both mutations, cardiomyocytes showed large cell-to-cell variation in Ca++-sensitivity. Interestingly, some cardiomyocytes were essentially indistinguishable from controls what might indicate that they had no mutant ß-MyHC while others had highly reduced Ca++-sensitivity suggesting substantial fractions of mutant ß-MyHC. Single-cell MYH7-mRNA-quantification in cardiomyocytes of the same patients revealed high cell-to-cell variability of mutated vs. wildtype mRNA, ranging from essentially pure mutant to essentially pure wildtype MYH7-mRNA. We found 27% of nuclei without active transcription sites which is inconsistent with continuous gene transcription but suggests burst-like transcription of MYH7. Model simulations indicated that burst-like, stochastic on/off-switching of MYH7 transcription, which is independent for mutant and wildtype alleles, could generate the observed cell-to-cell variation in the fraction of mutant vs. wildtype MYH7-mRNA, a similar variation in ß-MyHC-protein, and highly heterogeneous Ca++-sensitivity of individual cardiomyocytes. In the long run, such contractile imbalance in the myocardium may well induce progressive structural distortions like cellular and myofibrillar disarray and interstitial fibrosis, as they are typically observed in HCM.

16.
Front Physiol ; 5: 392, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25346696

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is the most frequent inherited cardiac disease. It has been related to numerous mutations in many sarcomeric and even some non-sarcomeric proteins. So far, however, no common mechanism has been identified by which the many different mutations in different sarcomeric and non-sarcomeric proteins trigger development of the FHC phenotype. Here we show for different MYH7 mutations variance in force pCa-relations from normal to highly abnormal as a feature common to all mutations we studied, while direct functional effects of the different FHC-mutations, e.g., on force generation, ATPase or calcium sensitivity of the contractile system, can be quite different. The functional variation among individual M. soleus fibers of FHC-patients is accompanied by large variation in mutant vs. wildtype ß-MyHC-mRNA. Preliminary results show a similar variation in mutant vs. wildtype ß-MyHC-mRNA among individual cardiomyocytes. We discuss our previously proposed concept as to how different mutations in the ß-MyHC and possibly other sarcomeric and non-sarcomeric proteins may initiate an FHC-phenotype by functional variation among individual cardiomyocytes that results in structural distortions within the myocardium, leading to cellular and myofibrillar disarray. In addition, distortions can activate stretch-sensitive signaling in cardiomyocytes and non-myocyte cells which is known to induce cardiac remodeling with interstitial fibrosis and hypertrophy. Such a mechanism will have major implications for therapeutic strategies to prevent FHC-development, e.g., by reducing functional imbalances among individual cardiomyocytes or by inhibition of their triggering of signaling paths initiating remodeling. Targeting increased or decreased contractile function would require selective targeting of mutant or wildtype protein to reduce functional imbalances.

17.
PLoS One ; 8(9): e75063, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086438

RESUMEN

Recent evidence indicates that regulatory small non-coding RNAs are not only components of eukaryotic cells and vesicles, but also reside within a number of different viruses including retroviral particles. Using ultra-deep sequencing we have comprehensively analyzed the content of simian immunodeficiency virions (SIV), which were compared to mock-control preparations. Our analysis revealed that more than 428,000 sequence reads matched the SIV mac239 genome sequence. Among these we could identify 12 virus-derived small RNAs (vsRNAs) that were highly abundant. Beside known retrovirus-enriched small RNAs, like 7SL-RNA, tRNA(Lys3) and tRNA(Lys) isoacceptors, we also identified defined fragments derived from small ILF3/NF90-associated RNA snaR-A14, that were enriched more than 50 fold in SIV. We also found evidence that small nucleolar RNAs U2 and U12 were underrepresented in the SIV preparation, indicating that the relative number or the content of co-isolated exosomes was changed upon infection. Our comprehensive atlas of SIV-incorporated small RNAs provides a refined picture of the composition of retrovirions, which gives novel insights into viral packaging.


Asunto(s)
ARN Viral/metabolismo , Virus de la Inmunodeficiencia de los Simios/genética , Virión/genética , Secuencia de Bases , Línea Celular , Exosomas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , ARN no Traducido/metabolismo , ARN Viral/genética , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
18.
Mol Neurodegener ; 6(1): 44, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21699683

RESUMEN

BACKGROUND: Prion diseases such as bovine spongiform encephalopathies (BSE) are transmissible neurodegenerative diseases which are presumably caused by an infectious conformational isoform of the cellular prion protein. Previous work has provided evidence that in murine prion disease the endogenous retrovirus (ERV) expression is altered in the brain. To determine if prion-induced changes in ERV expression are a general phenomenon we used a non-human primate model for prion disease. RESULTS: Cynomolgus macaques (Macaca fasicularis) were infected intracerebrally with BSE-positive brain stem material from cattle and allowed to develop prion disease. Brain tissue from the basis pontis and vermis cerebelli of the six animals and the same regions from four healthy controls were subjected to ERV expression profiling using a retrovirus-specific microarray and quantitative real-time PCR. We could show that Class I gammaretroviruses HERV-E4-1, ERV-9, and MacERV-4 increase expression in BSE-infected macaques. In a second approach, we analysed ERV-K-(HML-2) RNA and protein expression in extracts from the same cynomolgus macaques. Here we found a significant downregulation of both, the macaque ERV-K-(HML-2) Gag protein and RNA in the frontal/parietal cortex of BSE-infected macaques. CONCLUSIONS: We provide evidence that dysregulation of ERVs in response to BSE-infection can be detected on both, the RNA and the protein level. To our knowledge, this is the first report on the differential expression of ERV-derived structural proteins in prion disorders. Our findings suggest that endogenous retroviruses may induce or exacerbate the pathological consequences of prion-associated neurodegeneration.

19.
Mol Neurodegener ; 4: 36, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19712440

RESUMEN

The aim of our study was to analyze the differential expression of miRNAs in the brains of BSE-infected cynomolgus macaques as a model for Creutzfeldt-Jakob disease (CJD). MicroRNAs (miRNAs) are small noncoding RNAs regulating gene expression by mRNA targeting. Among other functions they contribute to neuronal development and survival. Recently, the lack of miRNA processing has been shown to promote neurodegeneration and deregulation of several miRNAs has been reported to be associated with Scrapie in mice. Therefore, we hypothesized that miRNAs are also regulated in response to human prion disease. We have applied miRNA-microarrays to identify deregulated miRNA candidates in brains of BSE-infected macaques. Shock-frozen brain sections of six BSE-infected and five non-infected macaques were used to validate regulated miRNA candidates by two independent qRT-PCR-based methods. Our study revealed significant upregulation of hsa-miR-342-3p and hsa-miR-494 in the brains of BSE-infected macaques compared to non-infected animals. In a pilot study we could show that hsa-miR-342-3p was also upregulated in brain samples of human type 1 and type 2 sporadic CJD. With respect to the reported regulation of this miRNA in Scrapie-infected mice, we propose that upregulation of hsa-miR-342-3p may be a general phenomenon in late stage prion disease and might be used as a novel marker for animal and human TSEs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA