Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 72: 128858, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35718104

RESUMEN

A new series of in vitro potent and highly selective histone methyl transferase enzyme G9a inhibitors was obtained. In particular, compound 2a, one the most potent G9a inhibitor identified, was endowed with >130-fold selectivity over GLP and excellent ligand efficiency. Therefore, it may represent a valuable tool compound to validate the role of highly selective G9a inhibitors in different pathological conditions. When 2a was characterized in vitro in cellular models of skeletal muscle differentiation, a relevant increase of myofibers' size and reduction of the fibroadipogenic infiltration were observed, further confirming the therapeutic potential of selective G9a inhibitors for the treatment of Duchenne muscle dystrophy.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Inhibidores Enzimáticos/farmacología
2.
Bioorg Med Chem Lett ; 73: 128904, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868496

RESUMEN

Chronic hepatitis B (CHB) is a major worldwide public health problem and novel anti-HBV therapies preventing liver disease progression to cirrhosis and hepatocellular carcinoma are urgently needed. Over the last several years, capsid assembly modulators (CAM) have emerged as clinically effective anti-HBV agents which can inhibit HBV replication in CHB patients. As part of a drug discovery program aimed at obtaining novel CAM endowed with high in vitro and in vivo antiviral activity, we identified a novel series of sulfamoylbenzamide (SBA) derivatives. Compound 10, one of the most in vitro potent SBA-derived CAM discovered to date, showed excellent pharmacokinetics in mice suitable for oral dosing. When studied in a transgenic mouse model of hepatic HBV replication, it was considerably more potent than NVR 3-778, the first sulfamoylbenzamide (SBA) CAM that entered clinical trials for CHB, at reducing viral replication in a dose-dependent fashion. We present herein the discovery process, the SAR analysis and the pre-clinical profile of this novel SBA CAM.


Asunto(s)
Antivirales , Cápside , Animales , Antivirales/farmacocinética , Proteínas de la Cápside , Virus de la Hepatitis B , Ratones , Ensamble de Virus , Replicación Viral
3.
Molecules ; 26(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34299442

RESUMEN

A new strategy that takes advantage of the synergism between NMR and UHPLC-HRMS yields accurate concentrations of a high number of compounds in biofluids to delineate a personalized metabolic profile (SYNHMET). Metabolite identification and quantification by this method result in a higher accuracy compared to the use of the two techniques separately, even in urine, one of the most challenging biofluids to characterize due to its complexity and variability. We quantified a total of 165 metabolites in the urine of healthy subjects, patients with chronic cystitis, and patients with bladder cancer, with a minimum number of missing values. This result was achieved without the use of analytical standards and calibration curves. A patient's personalized profile can be mapped out from the final dataset's concentrations by comparing them with known normal ranges. This detailed picture has potential applications in clinical practice to monitor a patient's health status and disease progression.


Asunto(s)
Metabolómica/métodos , Medicina de Precisión/métodos , Orina/química , Adulto , Anciano , Anciano de 80 o más Años , Cromatografía Líquida de Alta Presión/métodos , Cistitis/metabolismo , Cistitis/orina , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Metaboloma/fisiología , Persona de Mediana Edad , Espectrometría de Masas en Tándem/métodos , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/orina
4.
J Pept Sci ; 26(9): e3272, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32633064

RESUMEN

LC-HRMS-based identification of the products of peptide catabolism is the key to drive the design of more stable compounds. Because the catabolite of a given peptide can be very different from the parent compound and from other catabolites in terms of physicochemical properties, it can be challenging to develop an analytical method that allows recovery and detection of the parent and all parent-related catabolites. The aim of this study was to investigate how the recovery and the matrix effect of peptidic drugs and their catabolites are affected by different protein precipitation (PP) and solid-phase extraction (SPE) protocols. To this purpose, four model peptides representative of different classes (somatostatin, GLP-2, human insulin and liraglutide) were digested with trypsin and chymotrypsin to simulate proteolytic catabolism. The resulting mixtures of the parent peptides and their proteolytic products covering a wide range of relative hydrophobicity (HR ) and isoelectric points (pI) were spiked in human plasma and underwent different PP and SPE protocols. Recovery and matrix effect were measured for each peptide and its catabolites. PP with three volumes of ACN or EtOH yielded the highest overall recoveries (more than 50% for the four parent peptides and all their catabolites) among all the tested PP and SPE protocols. Mixed-mode anion exchange (MAX) was the only SPE sorbent among the five tested that allowed to extract all the peptides with recoveries more than 20%. Matrix effect was generally lower with SPE. Overall, it was observed that peptides with either high hydrophilicity (e.g., somatostatin catabolites) or hydrophobicity (GLP-2 and lipidated liraglutide catabolites) had a much narrower choice of PP solvent or SPE protocol. Simulation of catabolism using recombinant enzymes together with in silico calculation of the HR and the pI of potential proteolysis products is recommended to select the optimal extraction conditions for the study of peptide catabolism.


Asunto(s)
Quimotripsina/metabolismo , Péptidos/química , Extracción en Fase Sólida/métodos , Tripsina/metabolismo , Acetonitrilos/química , Cromatografía Líquida de Alta Presión , Etanol/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Plasma/química , Proteolisis , Espectrometría de Masas en Tándem
5.
Mol Pharm ; 16(5): 2069-2082, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30916978

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the huntingtin protein. For drug candidates targeting HD, the ability to cross the blood-brain barrier (BBB) and reach the site of action in the central nervous system (CNS) is crucial for achieving pharmacological activity. To assess the permeability of selected compounds across the BBB, we utilized a two-dimensional model composed of primary porcine brain endothelial cells and rat astrocytes. Our objective was to use this in vitro model to rank and prioritize compounds for in vivo pharmacokinetic and brain penetration studies. The model was first characterized using a set of validation markers chosen based on their functional importance at the BBB. It was shown to fulfill the major BBB characteristics, including functional tight junctions, high transendothelial electrical resistance, expression, and activity of influx and efflux transporters. The in vitro permeability of 54 structurally diverse known compounds was determined and shown to have a good correlation with the in situ brain perfusion data in rodents. We used this model to investigate the BBB permeability of a series of new HD compounds from different chemical classes, and we found a good correlation with in vivo brain permeation, demonstrating the usefulness of the in vitro model for optimizing CNS drug properties and for guiding the selection of lead compounds in a drug discovery setting.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central/uso terapéutico , Descubrimiento de Drogas/métodos , Enfermedad de Huntington/tratamiento farmacológico , Modelos Biológicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Astrocitos/metabolismo , Permeabilidad Capilar/fisiología , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Impedancia Eléctrica , Células Endoteliales/metabolismo , Permeabilidad , Ratas , Ratas Sprague-Dawley , Proteínas Transportadoras de Solutos/metabolismo , Porcinos , Uniones Estrechas/metabolismo
6.
Anal Bioanal Chem ; 409(10): 2685-2696, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28138743

RESUMEN

In drug discovery, there is increasing interest in peptides as therapeutic agents due to several appealing characteristics that are typical of this class of compounds, including high target affinity, excellent selectivity, and low toxicity. However, peptides usually present also some challenging ADME (absorption, distribution, metabolism, and excretion) issues such as limited metabolic stability, poor oral bioavailability, and short half-lives. In this context, early preclinical in vitro studies such as plasma metabolic stability assays are crucial to improve developability of a peptidic drug. In order to speed up the optimization of peptide metabolic stability, a strategy was developed for the integrated semi-quantitative determination of metabolic stability of peptides and qualitative identification/structural elucidation of their metabolites in preclinical plasma metabolic stability studies using liquid chromatography-high-resolution Orbitrap™ mass spectrometry (LC-HRMS). Sample preparation was based on protein precipitation: experimental conditions were optimized after evaluating and comparing different organic solvents in order to obtain an adequate extraction of the parent peptides and their metabolites and to minimize matrix effect. Peptides and their metabolites were analyzed by reverse-phase liquid chromatography: a template gradient (total run time, 6 min) was created to allow retention and good peak shape for peptides of different polarity and isoelectric points. Three LC columns were selected to be systematically evaluated for each series of peptides. Targeted and untargeted HRMS data were simultaneously acquired in positive full scan + data-dependent MS/MS acquisition mode, and then processed to calculate plasma half-life and to identify the major cleavage sites, this latter by using the software Biopharma Finder™. Finally, as an example of the application of this workflow, a study that shows the plasma stability improvement of a series of antimicrobial peptides is described. This approach was developed for the evaluation of in vitro plasma metabolic stability studies of peptides, but it could also be applied to other in vitro metabolic stability models (e.g., whole blood, hepatocytes). Graphical Abstract Left: trend plot for omiganan and major metabolites. Right: stability plot for five antimicrobial peptidesafter incubation with mouse plasma.


Asunto(s)
Cromatografía Liquida/métodos , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Espectrometría de Masas en Tándem/métodos , Animales , Ratones , Flujo de Trabajo
7.
J Pept Sci ; 20(1): 7-19, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24222478

RESUMEN

Neuromedin U (NMU) is an endogenous peptide implicated in the regulation of feeding, energy homeostasis, and glycemic control, which is being considered for the therapy of obesity and diabetes. A key liability of NMU as a therapeutic is its very short half-life in vivo. We show here that conjugation of NMU to human serum albumin (HSA) yields a compound with long circulatory half-life, which maintains full potency at both the peripheral and central NMU receptors. Initial attempts to conjugate NMU via the prevalent strategy of reacting a maleimide derivative of the peptide with the free thiol of Cys34 of HSA met with limited success, because the resulting conjugate was unstable in vivo. Use of a haloacetyl derivative of the peptide led instead to the formation of a metabolically stable conjugate. HSA-NMU displayed long-lasting, potent anorectic, and glucose-normalizing activity. When compared side by side with a previously described PEG conjugate, HSA-NMU proved superior on a molar basis. Collectively, our results reinforce the notion that NMU-based therapeutics are promising candidates for the treatment of obesity and diabetes.


Asunto(s)
Fármacos Antiobesidad/síntesis química , Hipoglucemiantes/síntesis química , Neuropéptidos/síntesis química , Neuropéptidos/farmacología , Polietilenglicoles/farmacología , Albúmina Sérica/síntesis química , Animales , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/farmacología , Glucemia , Línea Celular , Evaluación Preclínica de Medicamentos , Humanos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/farmacocinética , Polietilenglicoles/farmacocinética , Receptores de Neurotransmisores/agonistas , Albúmina Sérica/farmacocinética , Albúmina Sérica/farmacología , Albúmina Sérica Humana , Pérdida de Peso/efectos de los fármacos
8.
Metabolites ; 13(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37623904

RESUMEN

Huntington's disease (HD) is caused by the expansion of a polyglutamine (polyQ)-encoding tract in exon 1 of the huntingtin gene to greater than 35 CAG repeats. It typically has a disease course lasting 15-20 years, and there are currently no disease-modifying therapies available. Thus, there is a need for faithful mouse models of HD to use in preclinical studies of disease mechanisms, target validation, and therapeutic compound testing. A large variety of mouse models of HD were generated, none of which fully recapitulate human disease, complicating the selection of appropriate models for preclinical studies. Here, we present the urinary liquid chromatography-high-resolution mass spectrometry analysis employed to identify metabolic alterations in transgenic R6/2 and zQ175DN knock-in mice. In R6/2 mice, the perturbation of the corticosterone metabolism and the accumulation of pyrraline, indicative of the development of insulin resistance and the impairment of pheromone excretion, were observed. Differently from R6/2, zQ175DN mice showed the accumulation of oxidative stress metabolites. Both genotypes showed alterations in the tryptophan metabolism. This approach aims to improve our understanding of the molecular mechanisms involved in HD neuropathology, facilitating the selection of appropriate mouse models for preclinical studies. It also aims to identify potential biomarkers specific to HD.

9.
J Pharm Biomed Anal ; 227: 115256, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764268

RESUMEN

We recently described C18 fatty acid acylated peptides as a new class of potent long-lasting single-chain RXFP1 agonists that displayed relaxin-like activities in vivo. Early pharmacokinetics and toxicological studies of these stearic acid acylated peptides revealed a relevant oxidative metabolism occurring in dog and minipig, and also seen at a lower extent in monkey and rat. Mass spectrometry combined to NMR spectroscopy studies revealed that the oxidation occurred, unexpectedly, on the stearic acid chain at ω-1, ω-2 and ω-3 positions. Structure-metabolism relationship studies on acylated analogues with different fatty acids lengths (C15-C20) showed that the extent of oxidation was higher with longer chains. The oxidized metabolites could be generated in vitro using liver microsomes and engineered bacterial CYPs. These systems were correlating poorly with in vivo metabolism observed across species; however, the results suggest that this biotransformation pathway might be catalyzed by some unknown CYP enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ácidos Grasos , Animales , Perros , Ratas , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Microsomas Hepáticos/metabolismo , Oxidación-Reducción , Ácidos Esteáricos , Porcinos , Porcinos Enanos/metabolismo , Haplorrinos
10.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36548390

RESUMEN

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Asunto(s)
Enfermedad de Huntington , Tomografía de Emisión de Positrones , Animales , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligandos , Tomografía de Emisión de Positrones/métodos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
11.
J Med Chem ; 66(18): 13205-13246, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37712656

RESUMEN

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.

12.
Antimicrob Agents Chemother ; 56(8): 4161-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22615282

RESUMEN

HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.


Asunto(s)
Hepacivirus/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Quinoxalinas/farmacología , Quinoxalinas/farmacocinética , Proteínas no Estructurales Virales/antagonistas & inhibidores , Amidas , Animales , Antivirales/farmacología , Carbamatos , Ciclopropanos , Perros , Farmacorresistencia Viral , Genotipo , Hepacivirus/enzimología , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Hígado/efectos de los fármacos , Pan troglodytes , Quinoxalinas/metabolismo , Ratas , Sulfonamidas , Carga Viral/efectos de los fármacos
13.
Bioorg Med Chem ; 20(15): 4801-11, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22770556

RESUMEN

Previous investigations in our laboratories resulted in the discovery of a novel series of potent nucleoside inhibitors of Hepatitis C virus (HCV) NS5B polymerase bearing tetracyclic 7-substituted 7-deaza-adenine nucleobases. The planarity of such modified systems was suggested to play a role in the high inhibitory potency observed. This paper describes how we envisaged to maintain the desired planarity of the modified nucleobase by means of an intra-molecular H-bond, engaging a H-bond donor atom on an appropriately substituted 7-heterocyclic residue with the adjacent amino group of the nucleobase. The success of this strategy is reflected by the identification of several novel potent nucleoside inhibitors of HCV NS5B bearing a 7-heterocyclic substituted 7-deaza-adenine nucleobase. Amongst these, the 1,2,4-oxadiazole analog 11 showed high antiviral potency against HCV replication in replicon cells and efficient conversion to the corresponding NTP in vivo, with high and sustained levels of NTP measured in rat liver following intravenous and oral administration.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Hepacivirus/efectos de los fármacos , Nucleósidos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Replicón/efectos de los fármacos , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
14.
Bioorg Med Chem ; 20(15): 4751-9, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22771182

RESUMEN

Neuromedin U (NMU) is an endogenous peptide, whose role in the regulation of feeding and energy homeostasis is well documented. Two NMU receptors have been identified: NMUR1, expressed primarily in the periphery, and NMUR2, expressed predominantly in the brain. We recently demonstrated that acute peripheral administration of NMU exerts potent but acute anorectic activity and can improve glucose homeostasis, with both actions mediated by NMUR1. Here, we describe the development of a metabolically stable analog of NMU, based on derivatization of the native peptide with high molecular weight poly(ethylene) glycol (PEG) ('PEGylation'). PEG size, site of attachment, and conjugation chemistry were optimized, to yield an analog which displays robust and long-lasting anorectic activity and significant glucose-lowering activity in vivo. Studies in NMU receptor-deficient mice showed that PEG-NMU displays an expanded pharmacological profile, with the ability to engage NMUR2 in addition to NMUR1. In light of these data, PEGylated derivatives of NMU represent promising candidates for the treatment of obesity and diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Neuropéptidos/farmacología , Obesidad/tratamiento farmacológico , Polietilenglicoles/química , Receptores de Neurotransmisores/agonistas , Animales , Relación Dosis-Respuesta a Droga , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/administración & dosificación , Neuropéptidos/síntesis química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/síntesis química , Polietilenglicoles/farmacología , Receptores de Neurotransmisores/deficiencia , Relación Estructura-Actividad
15.
J Pharm Biomed Anal ; 210: 114566, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35042144

RESUMEN

Lipidation, a common strategy to improve half-life of therapeutic peptides, affects their tendency to oligomerize, their interaction with plasmatic proteins, and their catabolism. In this work, we have leveraged the use of NMR and SPR spectroscopy to elucidate oligomerization propensity and albumin interaction of different analogs of the two marketed lipidated GLP-1 agonists liraglutide and semaglutide. As most lipidated therapeutic peptides are administered by subcutaneous injection, we have also assessed in vitro their catabolism in the SC tissue using the LC-HRMS-based SCiMetPep assay. We observed that oligomerization had a shielding effect against catabolism. At the same time, binding to albumin may provide only limited protection from proteolysis due to the higher unbound peptide fraction present in the subcutaneous compartment with respect to the plasma. Finally, identification of catabolites in rat plasma after SC dosing of semaglutide showed a good correlation with the in vitro data, with Tyr19-Leu20 being the major cleavage site. Early characterization of the complex interplay between oligomerization, albumin binding, and catabolism at the injection site is essential for the synthesis of lipidated peptides with good pharmacokinetic profiles.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Albúminas , Animales , Semivida , Hipoglucemiantes , Liraglutida , Péptidos , Ratas
16.
Sci Rep ; 12(1): 20435, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443381

RESUMEN

Despite beneficial effects in acute heart failure, the full therapeutic potential of recombinant relaxin-2 has been hampered by its short half-life and the need for intravenous administration limiting its use to intensive care units. A multiparametric optimization of the relaxin B-chain led to the identification of single chain lipidated peptide agonists of RXFP1 like SA10SC-RLX with subcutaneous bioavailability and extended half-life. SA10SC-RLX has sub nanomolar activity on cells expressing human RXFP1 and molecular modeling associated with the study of different RXFP1 mutants was used to decipher the mechanism of SA10SC-RLX interaction with RXFP1. Telemetry was performed in rat where SA10SC-RLX was able to engage RXFP1 after subcutaneous administration without tachyphylaxis after repeated dosing. Renal blood flow was then used as a translational model to evaluate RXFP1 activation. SA10SC-RLX increased renal blood flow and decreased renal vascular resistance in rats as reported for relaxin in humans. In conclusion, SA10SC-RLX mimics relaxin activity in in vitro and in vivo models of acute RXFP1 engagement. SA10SC-RLX represents a new class of long-lasting RXFP1 agonist, suitable for once daily subcutaneous administration in patients and potentially paving the way to new treatments for chronic fibrotic and cardiovascular diseases.


Asunto(s)
Relaxina , Humanos , Animales , Ratas , Relaxina/farmacología , Semivida , Circulación Renal , Modelos Moleculares , Administración Intravenosa , Receptores de Péptidos/genética , Receptores Acoplados a Proteínas G
17.
Bioorg Med Chem Lett ; 21(18): 5283-8, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21802943

RESUMEN

Smoothened (Smo) antagonists are emerging as new therapies for the treatment of neoplasias with aberrantly reactivated hedgehog (Hh) signaling pathway. A novel series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as smoothened antagonists was recently described, herein the series has been further optimized through the incorporation of a basic amine into the urea. This development resulted in identification of some exceptionally potent smoothened antagonists with low serum shifts, however, reductive ring opening on the 1,2,4-oxadiazole in rats limits the applicability of these compounds in in vivo studies.


Asunto(s)
Amidas/farmacología , Piperazinas/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Receptor Smoothened , Estereoisomerismo , Relación Estructura-Actividad
18.
Bioorg Med Chem Lett ; 21(15): 4429-35, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21737263

RESUMEN

The Hedgehog (Hh-) signaling pathway is a key developmental pathway which gets reactivated in many human tumors, and smoothened (Smo) antagonists are emerging as novel agents for the treatment of malignancies dependent on the Hh-pathway, with the most advanced compounds demonstrating encouraging results in initial clinical trials. A novel series of potent bicyclic hydantoin Smo antagonists was reported in the preceding article, these have been resolved, and optimized to identify potent homochiral derivatives with clean off-target profiles and good pharmacokinetic properties in preclinical species. While showing in vivo efficacy in mouse allograft models, unsubstituted bicyclic tetrahydroimidazo[1,5-a]pyrazine-1,3(2H,5H)-diones were shown to epimerize in plasma. Alkylation of the C-8 position blocks this epimerization, resulting in the identification of MK-5710 (47) which was selected for further development.


Asunto(s)
Antineoplásicos/química , Proteínas Hedgehog/antagonistas & inhibidores , Imidazoles/química , Pirazinas/química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Perros , Proteínas Hedgehog/metabolismo , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Pirazinas/farmacología , Pirazinas/uso terapéutico , Ratas , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad
19.
J Pept Sci ; 17(4): 270-80, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21294225

RESUMEN

Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon-like peptide 1 (GLP-1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose-dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37-amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP-1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment-associated nausea than GLP-1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half-life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP-IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP-IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258-2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists currently in clinical use.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Oxintomodulina/química , Oxintomodulina/metabolismo , Secuencia de Aminoácidos , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Estructura Molecular , Obesidad/tratamiento farmacológico , Oxintomodulina/farmacología , Oxintomodulina/uso terapéutico , Péptidos/síntesis química , Péptidos/química , Péptidos/genética , Pérdida de Peso/efectos de los fármacos
20.
Cell Rep Med ; 2(10): 100409, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755129

RESUMEN

Fibrosing chronic graft-versus-host disease (cGVHD) is a debilitating complication of allogeneic stem cell transplantation (alloSCT). A driver of fibrosis is the kynurenine (Kyn) pathway, and Kyn metabolism patterns and cytokines may influence cGVHD severity and manifestation (fibrosing versus gastrointestinal [GI] cGVHD). Using a liquid chromatography-tandem mass spectrometry approach on sera obtained from 425 patients with allografts, we identified high CXCL9, high indoleamine-2,3-dioxygenase (IDO) activity, and an activated Kyn pathway as common characteristics in all cGVHD subtypes. Specific Kyn metabolism patterns could be identified for non-severe cGVHD, severe GI cGVHD, and fibrosing cGVHD, respectively. Specifically, fibrosing cGVHD was associated with a distinct pathway shift toward anthranilic and kynurenic acid, correlating with reduced activity of the vitamin-B2-dependent kynurenine monooxygenase, low vitamin B6, and increased interleukin-18. The Kyn metabolite signature is a candidate biomarker for severe fibrosing cGVHD and provides a rationale for translational trials on prophylactic vitamin B2/B6 supplementation for cGVHD prevention.


Asunto(s)
Enfermedad Injerto contra Huésped/sangre , Ácido Quinurénico/sangre , Quinurenina/sangre , Riboflavina/sangre , Trasplante de Células Madre , Vitamina B 6/sangre , Adolescente , Adulto , Anciano , Quimiocina CXCL9/sangre , Quimiocina CXCL9/genética , Femenino , Fibrosis , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/sangre , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Interleucina-18/sangre , Interleucina-18/genética , Quinurenina 3-Monooxigenasa/sangre , Quinurenina 3-Monooxigenasa/genética , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Leucemia/terapia , Linfoma/genética , Linfoma/metabolismo , Linfoma/patología , Linfoma/terapia , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Transducción de Señal , Trasplante Homólogo , Triptófano/sangre , ortoaminobenzoatos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA