Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 107(5): 3090-3103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38135048

RESUMEN

It is now widely accepted that dairy cow performance is influenced by both the host genome and rumen microbiome composition. The contributions of the genome and the microbiome to the phenotypes of interest are quantified by heritability (h2) and microbiability (m2), respectively. However, if the genome and microbiome are included in the model, then the h2 reflects only the contribution of the direct genetic effects quantified as direct heritability (hd2), and the holobiont effect reflects the joint action of the genome and the microbiome, quantified as the holobiability (ho2). The objectives of this study were to estimate h2, hd2,m2, and ho2 for dry matter intake, milk energy, and residual feed intake; and to evaluate the predictive ability of different models, including genome, microbiome, and their interaction. Data consisted of feed efficiency records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. Three kernel models were fit to each trait: one with only the genomic effect (model G), one with the genomic and microbiome effects (model GM), and one with the genomic, microbiome, and interaction effects (model GMO). The model GMO, or holobiont model, showed the best goodness-of-fit. The hd2 estimates were always 10% to 15% lower than h2 estimates for all traits, suggesting a mediated genetic effect through the rumen microbiome, and m2 estimates were moderate for all traits, and up to 26% for milk energy. The ho2 was greater than the sum of hd2 and m2, suggesting that the genome-by-microbiome interaction had a sizable effect on feed efficiency. Kernel models fitting the rumen microbiome (i.e., models GM and GMO) showed larger predictive correlations and smaller prediction bias than the model G. These findings reveal a moderate contribution of the rumen microbiome to feed efficiency traits in lactating Holstein cows and strongly suggest that the rumen microbiome mediates part of the host genetic effect.


Asunto(s)
Lactancia , Microbiota , Femenino , Bovinos , Animales , Rumen , ARN Ribosómico 16S , Leche , Fenotipo , Alimentación Animal , Dieta/veterinaria
2.
J Dairy Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908714

RESUMEN

The rumen microbiome is crucial for converting feed into absorbable nutrients used for milk synthesis, and the efficiency of this process directly impacts the profitability and sustainability of the dairy industry. Recent studies have found that the rumen microbial composition explains part of the variation in feed efficiency traits, including dry matter intake, milk energy, and residual feed intake. The main goal of this study was to reveal relationships between the host genome, rumen microbiome, and dairy cow feed efficiency using structural equation models. Our specific objectives were to (i) infer the mediation effects of the rumen microbiome on feed efficiency traits, (ii) estimate the direct and total heritability of feed efficiency traits, and (iii) calculate the direct and total breeding values of feed efficiency traits. Data consisted of dry matter intake, milk energy, and residual feed intake records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. We implemented structural equation models such that the host genome directly affects the phenotype (GP → P) and the rumen microbiome (GM → P), while the microbiome affects the phenotype (M → P), partially mediating the effect of the host genome on the phenotype (G → M → P). We found that 7 to 30% of microbes within the rumen microbial community had structural coefficients different from zero. We classified these microbes into 3 groups that could have different uses in dairy farming. Microbes with heritability <0.10 but significant causal effects on feed efficiency are attractive for external interventions. On the other hand, 2 groups of microbes with heritability ≥0.10, significant causal effects, and genetic covariances and causal effects with the same or opposite sign to feed efficiency are attractive for selective breeding, improving or decreasing the trait heritability and response to selection, respectively. In general, the inclusion of the different microbes in genomic models tends to decrease the trait heritability rather than increase it, ranging from -15% to +5%, depending on the microbial group and phenotypic trait. Our findings provide more understanding to target rumen microbes that can be manipulated, either through selection or management interventions, to improve feed efficiency traits.

3.
Sci Rep ; 14(1): 11864, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789554

RESUMEN

Objectives were to assess differences in uterine microbiome associated with clinical cure and pregnancy outcomes in dairy cows treated for metritis. Cows with metritis (reddish-brownish, watery, and fetid vaginal discharge) were paired with cows without metritis based on parity and days postpartum. Uterine contents were collected through transcervical lavage at diagnosis, five days later following antimicrobial therapy (day 5), and at 40 days postpartum. Uterine microbiome was assessed by sequencing the V4 hypervariable region of the 16S rRNA gene. Although alpha-diversity based on Chao1, Shannon, and inverse Simpson indexes at diagnosis did not differ between cows with and without metritis, disease was associated with differences in beta-diversity. Prevalence of Porphyromonas, Bacteroides, and Veillonella was greater in cows with metritis. Streptococcus, Sphingomonas, and Ureaplasma were more prevalent in cows without metritis. Differences in beta-diversity between cows with and without metritis persisted on day 5. Uterine microbiome was not associated with clinical cure. Richness and alpha-diversity, but not beta-diversity, of uterine microbiome 40 days postpartum were associated with metritis and pregnancy. No relationship between uterine microbiome and pregnancy outcomes was observed. Results indicate that factors other than changes in intrauterine bacterial community underlie fertility loss and clinical cure in cows with metritis.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Microbiota , Resultado del Embarazo , ARN Ribosómico 16S , Útero , Femenino , Animales , Bovinos , Embarazo , Útero/microbiología , Endometritis/microbiología , Endometritis/veterinaria , Endometritis/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/terapia , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
4.
Anim Microbiome ; 6(1): 5, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321581

RESUMEN

Genetic selection has remarkably helped U.S. dairy farms to decrease their carbon footprint by more than doubling milk production per cow over time. Despite the environmental and economic benefits of improved feed and milk production efficiency, there is a critical need to explore phenotypical variance for feed utilization to advance the long-term sustainability of dairy farms. Feed is a major expense in dairy operations, and their enteric fermentation is a major source of greenhouse gases in agriculture. The challenges to expanding the phenotypic database, especially for feed efficiency predictions, and the lack of understanding of its drivers limit its utilization. Herein, we leveraged an artificial intelligence approach with feature engineering and ensemble methods to explore the predictive power of the rumen microbiome for feed and milk production efficiency traits, as rumen microbes play a central role in physiological responses in dairy cows. The novel ensemble method allowed to further identify key microbes linked to the efficiency measures. We used a population of 454 genotyped Holstein cows in the U.S. and Canada with individually measured feed and milk production efficiency phenotypes. The study underscored that the rumen microbiome is a major driver of residual feed intake (RFI), the most robust feed efficiency measure evaluated in the study, accounting for 36% of its variation. Further analyses showed that several alpha-diversity metrics were lower in more feed-efficient cows. For RFI, [Ruminococcus] gauvreauii group was the only genus positively associated with an improved feed efficiency status while seven other taxa were associated with inefficiency. The study also highlights that the rumen microbiome is pivotal for the unexplained variance in milk fat and protein production efficiency. Estimation of the carbon footprint of these cows shows that selection for better RFI could reduce up to 5 kg of diet consumed per cow daily, potentially reducing up to 37.5% of CH4. These findings shed light that the integration of artificial intelligence approaches, microbiology, and ruminant nutrition can be a path to further advance our understanding of the rumen microbiome on nutrient requirements and lactation performance of dairy cows to support the long-term sustainability of the dairy community.

5.
Transl Anim Sci ; 7(1): txad123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023425

RESUMEN

Our objective was to evaluate the effects of combinations of Saccharomyces cerevisiae and Megasphaera elsdenii as direct-fed microbials (DFM) on ruminal microbiome during an acute acidosis challenge in a continuous culture system. Treatments provided a DFM dose of 1 × 108 colony-forming unit (CFU)/mL, as follows: control (no DFM), YM1 (S. cerevisiae and M. elsdenii strain 1), YM2 (S. cerevisiae and M. elsdenii strain 2), and YMM (S. cerevisiae and half of the doses of M. elsdenii strains 1 and 2). We conducted four experimental periods of 11 d, which consisted of non-acidotic days (1 to 8) and acidotic challenge days (9 to 11) to establish acute ruminal acidosis conditions with a common basal diet containing 12% neutral detergent fiber and 58% starch. Treatments were applied from days 8 to 11, and samples of liquid and solid-associated bacteria were collected on days 9 to 11. Overall, 128 samples were analyzed by amplification of the V4 region of bacterial 16S rRNA, and data were analyzed with R and SAS for alpha and beta diversity, taxa relative abundance, and correlation of taxa abundance with propionate molar proportion. We observed a lower bacterial diversity (Shannon index, P = 0.02) when YM1 was added to the diet in comparison to the three other treatments. Moreover, compared to control, addition of YM1 to the diet increased relative abundance of phylum Proteobacteria (P = 0.05) and family Succinivibrioceae (P = 0.05) in the solid fraction and tended to increase abundance of family Succinivibrioceae (P = 0.10) and genus Succinivibrio (P = 0.09) in the liquid fraction. Correlation analysis indicated a positive association between propionate molar proportion and relative abundance of Proteobacteria (r = 0.36, P = 0.04) and Succinivibrioceae (r = 0.36, P = 0.05) in the solid fraction. The inclusion of YM1 in high-grain diets with a high starch content resulted in greater abundance of bacteria involved in succinate synthesis which may have provided the substrate for the greater propionate synthesis observed.

6.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37350733

RESUMEN

Magnesium oxide (MgO) is one of the most used Mg supplements in livestock. However, to avoid relying upon only one Mg source, it is important to have alternative Mg sources. Therefore, the objective of this study was to evaluate the effects of the interaction of two Mg sources with buffer use on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. Twenty lactating Holstein cows were blocked by parity and days in milk into five blocks with four cows each, in a 2 × 2 factorial design. Within blocks, cows were assigned to one of four treatments: 1) MgO; 2) MgO + Na sesquicarbonate (MgO+); 3) calcium-magnesium hydroxide (CaMgOH); 4) CaMgOH + Na sesquicarbonate (CaMgOH+). For 60 d, cows were individually fed a corn silage-based diet, and treatments were top-dressed. Ruminal fluid was collected via an orogastric tube, for analyses of the microbiota composition, volatile fatty acids (VFA), lactate, and ammonia nitrogen (NH3-N). The microbiota composition was analyzed using V4/16S rRNA gene sequencing, and taxonomy was assigned using the Silva database. Statistical analysis was carried out following the procedures of block design analysis, where block and cow were considered random variables. Effects of Mg source, buffer, and the interaction between Mg Source × Buffer were analyzed through orthogonal contrasts. There was no interaction effect of the two factors evaluated. There was a greater concentration of NH3-N, lactate, and butyrate in the ruminal fluid of cows fed with CaMg(OH)2, regardless of the buffer use. The increase in these fermentation intermediates/ end-products can be explained by an increase in abundance of micro-organisms of the genus Prevotella, Lactobacillus, and Butyrivibrio, which are micro-organisms mainly responsible for proteolysis, lactate-production, and butyrate-production in the rumen, respectively. Also, dietary buffer use did not affect the ruminal fermentation metabolites and pH; however, an improvement of the apparent total tract digestibility of dry matter (DM), organic matter (OM), neutral fiber detergent (NDF), and acid fiber detergent (ADF) were found for animals fed with dietary buffer. In summary, there was no interaction effect of buffer use and Mg source, whereas buffer improved total tract apparent digestibility of DM and OM through an increase in NDF and ADF digestibility and CaMg(OH)2 increased ruminal concentration of butyrate and abundance of butyrate-producing bacteria.


Magnesium oxide (MgO) is extensively used as a dietary magnesium (Mg) source in dairy cow diets. However, dairy operations can benefit from other Mg sources. Thus, we evaluated the replacement of dietary MgO with calcium­magnesium hydroxide (CaMg(OH)2) in diets with and without ruminal buffer and their effects on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. The study used 20 lactating Holstein cows that were blocked in groups of four and randomly assigned to one of the four treatments. The ruminal content, feed, feces, and urine were collected for analysis of the microbiota composition, ruminal fermentation, nitrogen metabolism, and apparent nutrient digestibility. There was no interaction effect of dietary buffer use and Mg source, while buffer improved total tract apparent digestibility of the dry matter and fiber components; CaMg(OH)2 increased the ruminal concentration of butyrate and the abundance of butyrate-producing bacteria. In summary, we conclude that using CaMg(OH)2 can improve ruminal fermentation regardless of buffer use, which indicates that we can take advantage of the mineral formulation in the diet to modulate the ruminal microbiota composition.


Asunto(s)
Lactancia , Microbiota , Embarazo , Femenino , Bovinos , Animales , Magnesio/análisis , Magnesio/metabolismo , Magnesio/farmacología , Fermentación , Óxido de Magnesio/análisis , Óxido de Magnesio/metabolismo , Óxido de Magnesio/farmacología , Detergentes/análisis , Detergentes/metabolismo , Detergentes/farmacología , ARN Ribosómico 16S/metabolismo , Digestión , Leche/metabolismo , Dieta/veterinaria , Butiratos/análisis , Zea mays/metabolismo , Lactatos/análisis , Lactatos/metabolismo , Lactatos/farmacología , Rumen/metabolismo
7.
Sci Rep ; 13(1): 5854, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041192

RESUMEN

Less invasive rumen sampling methods, such as oro-esophageal tubing, became widely popular for exploring the rumen microbiome and metabolome. However, it remains unclear if such methods represent well the rumen contents from the rumen cannula technique. Herein, we characterized the microbiome and metabolome in the rumen content collected by an oro-esophageal tube and by rumen cannula in ten multiparous lactating Holstein cows. The 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Untargeted metabolome was characterized using gas chromatography of a time-of-flight mass spectrometer. Bacteroidetes, Firmicutes, and Proteobacteria were the top three most abundant phyla representing ~ 90% of all samples. Although the pH of oro-esophageal samples was greater than rumen cannula, we found no difference in alpha and beta-diversity among their microbiomes. The overall metabolome of oro-esophageal samples was slightly different from rumen cannula samples yet more closely related to the rumen cannula content as a whole, including its fluid and particulate fractions. Enrichment pathway analysis revealed a few differences between sampling methods, such as when evaluating unsaturated fatty acid pathways in the rumen. The results of the current study suggest that oro-esophageal sampling can be a proxy to screen the 16S rRNA rumen microbiome compared to the rumen cannula technique. The variation introduced by the 16S rRNA methodology may be mitigated by oro-esophageal sampling and the possibility of increasing experimental units for a more consistent representation of the overall microbial population. Studies should consider an under or over-representation of metabolites and specific metabolic pathways depending on the sampling method.


Asunto(s)
Lactancia , Microbiota , Animales , Femenino , Bovinos , ARN Ribosómico 16S/genética , Rumen/microbiología , Cánula , Metaboloma
8.
Metabolites ; 13(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37999252

RESUMEN

The objective of this study was to identify alterations in the vaginal discharge (VD) metabolome and potential biomarkers to predict metritis development and a cure in dairy cows. This prospective cohort study was conducted on two dairies located in CA and TX. Vaginal discharge was evaluated and collected using the Metricheck® device. Cows were examined for metritis at 4, 7, and 9 days in milk (DIM). Cows with a fetid, watery, and reddish-brown uterine discharge were classified as having metritis and randomized to receive ceftiofur (n = 10) or remain untreated (n = 7). A cure was defined as the absence of a fetid, watery, reddish-brown uterine discharge at 14 d after enrollment. Vaginal discharge samples were collected from 86 cows within 6 h after parturition, at 4 and 7 DIM, at metritis diagnosis, and at 4 and 7 days after metritis diagnosis. Cows with metritis (MET; n = 17) were paired with counterparts without metritis (HTH) of a similar DIM and parity (n = 34). The uterine metabolome was evaluated using untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Metabolomic data were analyzed using the MetaboAnalyst 5.0. Data were log-transformed and auto-scaled for normalization. Univariate analyses, including the fold-change, were performed to identify the metabolites linked to metritis development and its cure and principal component analysis and partial least squares discriminant analysis were performed to explain metabolite variance between animals developing or not developing metritis and being cured or not being cured of metritis. Comparing HTH with MET cows at calving, 12 metabolites were upregulated, and one was downregulated. At four and seven DIM, 51 and 74 metabolites, respectively, were altered between MET and HTH cows. After metritis development, three and five metabolites were upregulated in cows that were cured and in cows that received treatment and were cured, respectively. In all scenarios, the metabolites lignoceric, malic, and maleic acids, ornithine, and hypotaurine, which are associated with arginine/aminoacyl-tRNA biosynthesis and taurine/purine metabolism, were upregulated in HTH cows. Metritis was associated with changes in the uterine metabolome. Cows not being cured of metritis had changes in the uterus metabolome independent of receiving ceftiofur or remaining untreated. Metabolome analysis may be an important tool to understand the vaginal discharge changes during postpartum and the dynamics of metritis development and cures and help to identify biomarkers to predict metritis being cured.

9.
Transl Anim Sci ; 6(3): txac092, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35912064

RESUMEN

Our objective was to evaluate the inclusion of calcium-magnesium carbonate [CaMg(CO3)2] and calcium-magnesium hydroxide [CaMg(OH)4] in corn silage-based diets and their impact on ruminal microbiome. Our previous work showed a lower pH and molar proportion of butyrate from diets supplemented with [CaMg(CO3)2] compared to [CaMg(OH)4]; therefore, we hypothesized that ruminal microbiome would be affected by Mg source. Four continuous culture fermenters were arranged in a 4 × 4 Latin square with the following treatments defined by the supplemental source of Mg: 1) Control (100% MgO, plus sodium sesquicarbonate as a buffer); 2) CO 3 [100% CaMg(CO3)2]; 3) OH [100% CaMg(OH)4]; and 4) CO 3 /OH [50% Mg from CaMg(CO3)2, 50% Mg from CaMg(OH)4]. Diet nutrient concentration was held constant across treatments (16% CP, 30% NDF, 1.66 MCal NEl/kg, 0.67% Ca, and 0.25% Mg). We conducted four fermentation periods of 10 d, with the last 3 d for collection of samples of solid and liquid digesta effluents for DNA extraction. Overall, 16 solid and 16 liquid samples were analyzed by amplification of the V4 variable region of bacterial 16S rRNA. Data were analyzed with R and SAS to determine treatment effects on taxa relative abundance of liquid and solid fractions. Correlation of butyrate molar proportion with taxa relative abundance was also analyzed. Treatments did not affect alpha and beta diversities or relative abundance of phylum, class and order in either liquid or solid fractions. At the family level, relative abundance of Lachnospiraceae in solid fraction was lower for CO3 and CO3/OH compared to OH and Control (P < 0.01). For genera, abundance of Butyrivibrio (P = 0.01) and Lachnospiraceae ND3007 (P < 0.01) (both from Lachnospiraceae family) was lower and unclassified Ruminococcaceae (P = 0.03) was greater in CO3 than Control and OH in solid fraction; while abundance of Pseudobutyrivibrio (P = 0.10) and Lachnospiraceae FD2005 (P = 0.09) (both from Lachnospiraceae family) and Ruminobacter (P = 0.09) tended to decrease in CO3 compared to Control in liquid fraction. Butyrate molar proportion was negatively correlated to Ruminococcaceae (r = -0.55) in solid fraction and positively correlated to Pseudobutyrivibrio (r = 0.61) and Lachnospiraceae FD2005 (r = 0.61) in liquid. Our results indicate that source of Mg has an impact on bacterial taxa associated with ruminal butyrate synthesis, which is important for epithelial health and fatty acid synthesis.

10.
Sci Rep ; 12(1): 7978, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562415

RESUMEN

This study aimed to evaluate the effects of Saccharomyces cerevisiae and Megasphaera elsdenii as direct fed microbials (DFM) in beef cattle finishing diets to alleviate acute ruminal lactic acidosis in vitro. A dual-flow continuous culture system was used. Treatments were a Control, no DFM; YM1, S. cerevisiae and M. elsdenii strain 1; YM2, S. cerevisiae and M. elsdenii strain 2; and YMM, S. cerevisiae and half of the doses of M. elsdenii strain 1 and strain 2. Each DFM dose had a concentration of 1 × 108 CFU/mL. Four experimental periods lasted 11 days each. For the non-acidotic days (day 1-8), diet contained 50:50 forage to concentrate ratio. For the challenge days (day 9-11), diet contained 10:90 forage to concentrate ratio. Acute ruminal acidosis was successfully established. No differences in pH, D-, L-, or total lactate were observed among treatments. Propionic acid increased in treatments containing DFM. For N metabolism, the YMM treatment decreased protein degradation and microbial protein synthesis. No treatment effects were observed on NH3-N concentration; however, efficiency of N utilization by ruminal bacteria was greater than 80% during the challenge period and NH3-N concentration was reduced to approximately 2 mg/dL as the challenge progressed.


Asunto(s)
Acidosis , Megasphaera elsdenii , Acidosis/metabolismo , Alimentación Animal/microbiología , Animales , Bovinos , Dieta/veterinaria , Fermentación , Concentración de Iones de Hidrógeno , Rumen/microbiología , Saccharomyces cerevisiae
11.
Sci Rep ; 12(1): 4904, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318351

RESUMEN

Fermentation of dietary nutrients in ruminants' gastrointestinal (GI) tract is an essential mechanism utilized to meet daily energy requirements. Especially in lactating dairy cows, the GI microbiome plays a pivotal role in the breakdown of indigestible plant polysaccharides and supply most AAs, fatty acids, and gluconeogenic precursors for milk synthesis. Although the contribution of the rumen microbiome to production efficiency in dairy cows has been widely researched over the years, variations throughout the lactation and the lower gut microbiome contribution to these traits remain poorly characterized. Therefore, we investigated throughout lactation the relationship between the rumen and lower gut microbiomes with production efficiency traits in Holstein cows. We found that the microbiome from both locations has temporal stability throughout lactation, yet factors such as feed intake levels played a significant role in shaping microbiome diversity. The composition of the rumen microbiome was dependent on feed intake. In contrast, the lower gut microbiome was less dependent on feed intake and associated with a potentially enhanced ability to digest dietary nutrients. Therefore, milk production traits may be more correlated with microorganisms present in the lower gut than previously expected. The current study's findings advance our understanding of the temporal relationship of the rumen and lower gut microbiomes by enabling a broader overview of the gut microbiome and production efficiency towards more sustainable livestock production.


Asunto(s)
Microbioma Gastrointestinal , Rumen , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Digestión , Femenino , Fermentación , Lactancia , Leche/metabolismo , Rumen/metabolismo
12.
J Anim Sci ; 99(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34664661

RESUMEN

The objective of this study was to examine the enzyme activities of an enzymatic complex produced by Pleurotus ostreatus in different pH and the effects of adding increased application rates of this enzymatic complex on the fermentation profile, chemical composition, and in situ ruminal disappearance of whole-plant corn silage (WPCS) at the onset of fermentation and 30 d after ensiling. The lignocellulolytic enzymatic complex was obtained through in vitro cultivation of P. ostreatus. In the first experiment, the activities of laccase, lignin peroxidase (LiP), manganese peroxidase, endo- and exo-glucanase, xylanase, and mannanase were determined at pH 3, 4, 5, and 6. In the second experiment, five application rates of enzymatic complex were tested in a randomized complete block design (0, 9, 18, 27, and 36 mg of lignocellulosic enzymes/kg of fresh whole-plant corn [WPC], corresponding to 0, 0.587, 1.156, 1.734, and 2.312 g of enzymatic complex/kg of fresh WPC, respectively). There were four replicates per treatment (vacuum-sealed bags) per opening time. Bags were opened 1, 2, 3, and 7 d after ensiling (onset of fermentation period) and 30 d after ensiling to evaluate the fermentation profile, chemical composition, and in situ dry matter and neutral fiber detergent disappearance of WPCS. Laccase had the greatest activity at pH 5 (P < 0.01), whereas manganese peroxidase and LiP had the greatest activity at pH 4 (P < 0.01; P < 0.01). There was no effect of the rate of application of enzymatic complex, at the onset of fermentation, on the fermentation profile (P > 0.21), and chemical composition (P > 0.36). The concentration of water-soluble carbohydrate quadratically decreased (P < 0.01) over the ensiling time at the onset of fermentation, leading to a quadratic increase of lactic acid (P = 0.02) and a linear increase of acetic acid (P = 0.02) throughout fermentation. Consequently, pH quadratically decreased (P < 0.01). Lignin concentration linearly decreased (P = 0.04) with the enzymatic complex application rates at 30 d of storage; however, other nutrients and fermentation profiles did not change (P > 0.11) with the enzymatic complex application rates. Addition of lignocellulolytic enzymatic complex from P. ostreatus cultivation to WPC at ensiling decreased WPCS lignin concentration 30 d after ensiling; however, it was not sufficient to improve in situ disappearance of fiber and dry matter.


Asunto(s)
Ensilaje , Zea mays , Animales , Carbohidratos , Fibras de la Dieta , Fermentación , Ensilaje/análisis
13.
J Anim Sci ; 98(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32761212

RESUMEN

Acute and subacute ruminal acidosis (SARA) are common nutritional problems in both beef and dairy cattle. Therefore, the objective of this review is to describe how ruminal Gram-negative bacteria could contribute to the pathogenesis of ruminal acidoses, by releasing lipopolysaccharides (LPS; a component of their cell wall) in the ruminal fluid. When cattle consume excessive amounts of highly fermentable carbohydrates without prior adaptation, normal fermentation become disrupted. The fermentation of these carbohydrates quickly decreases ruminal pH due to the accumulation of short-chain fatty acids and lactate in the rumen. As a consequence, ruminal epithelium may be damaged and tissue function could be impaired, leading to a possible translocation of pathogenic substances from the rumen into the bloodstream. Such changes in fermentation are followed by an increase in Gram-positive bacteria while Gram-negative bacteria decrease. The lyses of Gram-negative bacteria during ruminal acidosis increase LPS concentration in the ruminal fluid. Because LPS is a highly proinflammatory endotoxin in the circulatory system, past studies have raised concerns regarding ruminal LPS contribution to the pathogenesis of ruminal acidosis. Although animals that undergo these disorders do not always have an immune response, recent studies showed that different Gram-negative bacteria have different LPS composition and toxicity, which may explain the differences in immune response. Given the diversity of Gram-negative bacteria in the rumen, evaluating the changes in the bacterial community during ruminal acidosis could be used as a way to identify which Gram-negative bacteria are associated with LPS release in the rumen. By identifying and targeting ruminal bacteria with possible pathogenic LPS, nutritional strategies could be created to overcome, or at least minimize, ruminal acidosis.


Asunto(s)
Acidosis/veterinaria , Enfermedades de los Bovinos/microbiología , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo , Acidosis/microbiología , Animales , Bovinos , Dieta/veterinaria , Epitelio/metabolismo , Epitelio/microbiología , Ácidos Grasos Volátiles/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Lipopolisacáridos/efectos adversos , Rumen/metabolismo , Rumen/microbiología
14.
Transl Anim Sci ; 4(1): 214-228, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32704981

RESUMEN

The objectives of this study were: 1) to compare the effects of live yeast (LY), yeast fermentation product (YFP), a mix of Lactobacillus acidophilus and Propionibacterium freudenreichii (MLP), and Lactobacillus plantarum included as additives in dairy cows' diets on in vitro ruminal fermentation and gas production (GP); and 2) to evaluate the effects of L. plantarum as direct-fed microbials (DFM) in dairy cows' diets on in vitro ruminal fermentation, GP, nutrient digestibility, and N metabolism. Three experiments were carried out: Exp. 1 had the objective to compare all additives regarding ruminal fermentation parameters: an Ankom GP system was used in a completely randomized design, consisting of four 48 h incubations, and eight replications per treatment. There were eight treatments: a basal diet without additive (CTRL) or with one of the following additives: LY, YFP, MLP, or L. plantarum at four levels (% of diet Dry Matter (DM)): 0.05% (L1), 0.10% (L2), 0.15% (L3), and 0.20% (L4). In Exp. 2, a batch culture was used to evaluate ruminal fermentation, and CO2 and CH4 production using the same treatments and a similar experimental design, except for having 16 replications per treatment. Based on Exp. 1 and 2 results, Exp. 3 aimed at evaluating the effects of the L. plantarum on ruminal true nutrient digestibility and N utilization in order to evaluate the use of L. plantarum as DFM. The treatments CTRL, MLP, L1, and L2 were used in a replicated 4 × 4 Latin square design using a dual-flow continuous culture system. Data were analyzed using linear and nonlinear regression; treatment means were compared through contrasts, and L treatments in Exp. 1 and 2 were tested for linear, quadratic, and cubic effects. In Exp. 1, all treatments containing additives tended to reduce OM digestibility as well as reduced total volatile fatty acids (VFA) concentration and total GP. The YFP had greater OM digestibility than LY, and MLP treatment had greater total VFA concentration compared to L. plantarum treatments. In Exp. 2, additives reduced CO2 production, and there were no major differences in CH4. In Exp. 3, all additives reduced NH3-N concentration. In conclusion, pH and lactate concentration were not affected in all three experiments regardless of additive tested, suggesting that these additives may not improve ruminal fermentation by pH modulation; and L. plantarum may improve ruminal N metabolism when used as DFM in high-producing dairy cows' diets, mainly by reducing NH3-N concentration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA