Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem J ; 476(1): 101-113, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30563945

RESUMEN

Frutalin (FTL) is a multiple-binding lectin belonging to the jacalin-related lectin (JRL) family and derived from Artocarpus incisa (breadfruit) seeds. This lectin specifically recognizes and binds α-d-galactose. FTL has been successfully used in immunobiological research for the recognition of cancer-associated oligosaccharides. However, the molecular bases by which FTL promotes these specific activities remain poorly understood. Here, we report the whole 3D structure of FTL for the first time, as determined by X-ray crystallography. The obtained crystals diffracted to 1.81 Å (Apo-frutalin) and 1.65 Å (frutalin-d-Gal complex) of resolution. The lectin exhibits post-translational cleavage yielding an α- (133 amino acids) and ß-chain (20 amino acids), presenting a homotetramer when in solution, with a typical JRL ß-prism. The ß-prism was composed of three 4-stranded ß-sheets forming three antiparallel Greek key motifs. The carbohydrate-binding site (CBS) involved the N-terminus of the α-chain and was formed by four key residues: Gly25, Tyr146, Trp147 and Asp149. Together, these results were used in molecular dynamics simulations in aqueous solutions to shed light on the molecular basis of FTL-ligand binding. The simulations suggest that Thr-Ser-Ser-Asn (TSSN) peptide excision reduces the rigidity of the FTL CBS, increasing the number of interactions with ligands and resulting in multiple-binding sites and anomeric recognition of α-d-galactose sugar moieties. Our findings provide a new perspective to further elucidate the versatility of FTL in many biological activities.


Asunto(s)
Artocarpus/química , Galactosa/química , Galectinas/química , Semillas/química , Sitios de Unión , Relación Estructura-Actividad , Especificidad por Sustrato
2.
Plant Cell Rep ; 33(8): 1289-306, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24770441

RESUMEN

KEY MESSAGE: Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC-ESI-MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.


Asunto(s)
Fabaceae/fisiología , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Estrés Fisiológico , Regulación hacia Abajo , Electroforesis en Gel Bidimensional , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Espectrometría de Masas , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Tolerancia a la Sal , Sodio/farmacología
3.
Clin Appl Thromb Hemost ; 26: 1076029620905338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32299226

RESUMEN

The aim of this study was to determine the plasma protein profile of patients with primary antiphospholipid syndrome (PAPS) compared to healthy controls and identify proteins that might be used in the evaluation, diagnosis, and prognosis of this condition. The sample consisted of 14 patients with PAPS and 17 sex- and age-matched controls. Plasma samples were submitted to proteomic analysis (albumin and immunoglobulin G depletion, concentration, digestion, and label-free data-independent mass spectrometry). The software ExpressionE was used to quantify intergroup differences in protein expression. The analysis yielded 65 plasma proteins of which 11 were differentially expressed (9 upregulated and 2 downregulated) in relation to controls. Four of these are known to play a role in pathophysiological mechanisms of thrombosis: fibrinogen α chain, fibrinogen α chain, apolipoprotein C-III, and α-1-glycoprotein-1. Our analysis revealed autoimmune response and the presence of proteins believed to be functionally involved in the induction of procoagulant activity in patients with PAPS. Further studies are necessary to confirm our findings and may eventually lead to the development of significantly more accurate diagnostic tools.


Asunto(s)
Síndrome Antifosfolípido/sangre , Espectrometría de Masas/métodos , Proteínas/metabolismo , Proteómica/métodos , Adulto , Femenino , Humanos , Masculino
4.
Int J Biol Macromol ; 121: 429-442, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30326222

RESUMEN

Plant lectins are carbohydrate-binding proteins, which can interact with cell surfaces to initiate anti-inflammatory pathways, as well as immunomodulatory functions. Here, we have extracted, purified and part-characterized the bioactivity of Jacalin, Frutalin, DAL and PNA, before evaluating their potential for wound healing in cultured human skin fibroblasts. Only Frutalin stimulated fibroblast migration in vitro, prompting further studies which established its low cytotoxicity and interaction with TLR4 receptors. Frutalin also increased p-ERK expression and stimulated IL-6 secretion. The in vivo potential of Frutalin for wound healing was then assessed in hybrid combination with the polysaccharide galactomannan, purified from Caesalpinia pulcherrima seeds, using both hydrogel and membrane scaffolds formulations. Physical-chemical characterization of the hybrid showed that lectin-galactomannan interactions increased the pseudoplastic behaviour of solutions, reducing viscosity and increasing Frutalin's concentration. Furthermore, infrared spectroscopy revealed -OH band displacement, likely caused by interaction of Frutalin with galactose residues present on galactomannan chains, while average membrane porosity was 100 µm, sufficient to ensure water vapor permeability. Accelerated angiogenesis and increased fibroblast and keratinocyte proliferation were observed with the optimal hybrid recovering the lesioned area after 11 days. Our findings indicate Frutalin as a biomolecule with potential for tissue repair, regeneration and chronic wound healing.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Galectinas/química , Hidrogeles/química , Mananos/química , Membranas Artificiales , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Línea Celular , Galactosa/análogos & derivados , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo
5.
Anim Reprod ; 16(4): 902-913, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-32368270

RESUMEN

The Saanen goat breed has been widely explored in breeding programmes; however, there are few reports about the breed's genetic and molecular composition. Thus, this study aimed to characterize the proteomic profile of spermatozoa from Saanen breeding goats. Five breeding animals with proven fertility were selected, the spermatozoa were collected, and the protein was extracted. Subsequently, the proteins were separated and analysed by two-dimensional electrophoresis and mass spectrometry; the proteins were then identified with the SwissProt database. A total of 31 proteins involved in reproduction were identified, including binding proteins on spermatozoa for fusion with the egg, acrosomal membrane proteins, metabolic enzymes, heat shock proteins, cytoskeletal proteins and spermatozoa motility proteins. The characterization of such proteins clarifies the molecular mechanisms of spermatogenesis and the modifications that ensure the success of fertilization.

6.
Int J Biol Macromol ; 112: 548-554, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29408007

RESUMEN

In this study we evaluated the effect of frutalin (FTL) on mouse behavior. Mice (n=6/group) were treated (i.p.) with FTL (0.25; 0.5 or 1mg/kg) or vehicle and submitted to several tests (hole-board/HBT, elevated plus maze/PMT, open field/OFT, tail suspension/TST, or forced swimming/FST). Yohimbine, ketamine, l-NAME, aminoguanidine, 7-NI, methylene blue, l-arginine or dl-serine was administered 30min before FTL (0.5mg/kg). To evaluate the subchronic effect, animals were injected with FTL or vehicle for 7days and submitted to the FST. Molecular docking was simulated using FTL against NOS and the NMDA receptor. No changes were observed in the HBT or the OFT. FTL (0.25mg/kg) increased the number of entries into enclosed arms in the PMT. FTL reduced immobility in the TST (0.25 and 0.5mg/kg) and the FST (0.25mg/kg; 0.5mg/kg). The effect of FTL was dependent on carbohydrate interaction and protein structure integrity and was reduced by ketamine, l-NAME, aminoguanidine, 7-NI and methylene blue, but not by l-arginine, yohimbine or dl-serine. The antidepressant-like effect remained after subchronic treatment. The molecular docking study revealed a strong interaction between FTL and NOS and NMDA. FTL was found to have an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway.


Asunto(s)
Antidepresivos/farmacología , GMP Cíclico/metabolismo , Galectinas/farmacología , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Animales , Galectinas/química , Galectinas/aislamiento & purificación , Suspensión Trasera , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Dominios Proteicos , Transducción de Señal/efectos de los fármacos , Natación
7.
Front Oncol ; 7: 14, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28210565

RESUMEN

Breast cancer is one of the most commonly diagnosed types of cancer among women. Breast cancer mortality rates remain high probably because its diagnosis is hampered by inaccurate detection methods. Since changes in protein expression as well as modifications in protein glycosylation have been frequently reported in cancer development, the aim of this work was to study the differential expression as well as modifications of glycosylation of proteins from plasma of women with breast cancer at different stages of disease (n = 30) compared to healthy women (n = 10). A proteomics approach was used that depleted albumin and IgG from plasma followed by glycoprotein enrichment using immobilized Moraceae lectin (frutalin)-affinity chromatography and data-independent label-free mass spectrometric analysis. Data are available via ProteomeXchange with identifier PXD003106. As result, 57,016 peptides and 4,175 proteins among all samples were identified. From this, 40 proteins present in unbound (PI-proteins that did not interact with lectin) and bound (PII-proteins that interacted with lectin) fractions were differentially expressed. High levels of apolipoprotein A-II were detected here that were elevated significantly in the early and advanced stages of the disease. Apolipoprotein C-III was detected in both fractions, and its level was increased slightly in the PI fraction of patients with early-stage breast cancer and expressed at higher levels in the PII fraction of patients with early and intermediate stages. Clusterin was present at higher levels in both fractions of patients with early and intermediate stages of breast cancer. Our findings reveal a correlation between alterations in protein glycosylation, lipid metabolism, and the progression of breast cancer.

8.
Biosci Rep ; 37(4)2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28684550

RESUMEN

Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin (FTP) and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. FTP is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically active recombinant FTP in Escherichia coli BL21, optimizing conditions with the best set yielding >40 mg/l culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/ml of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP-mannose and FTP-glucose crystals were obtained, and they diffracted X-rays to a resolution of 1.58 (P212121), 1.70 (P3121) and 1.60 (P3121) Å respectively. The best solution showed four monomers per asymmetric unit. Molecular dynamics (MD) simulation suggested that FTP displays higher affinity for mannose than glucose. Cell studies revealed that FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/ml and was also capable of stimulating cell migration at 50 µg/ml. In conclusion, our optimized expression system allowed high amounts of correctly folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example in wound healing and tissue regeneration.


Asunto(s)
Artocarpus/genética , Expresión Génica , Glucosa/química , Manosa/química , Lectinas de Plantas , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Lectinas de Plantas/biosíntesis , Lectinas de Plantas/química , Lectinas de Plantas/genética , Dominios Proteicos
9.
Biomark Res ; 4: 1, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26823978

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia is the most common malignant cancer in childhood. The signs and symptoms of childhood cancer are difficult to recognize, as it is not the first diagnosis to be considered for nonspecific complaints, leading to potential uncertainty in diagnosis. The aim of this study was to perform proteomic analysis of serum from pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) to identify candidate biomarker proteins, for use in early diagnosis and evaluation of treatment. METHODS: Serum samples were obtained from ten patients at the time of diagnosis (B-ALL group) and after induction therapy (AIT group). Sera from healthy children were used as controls (Control group). The samples were subjected to immunodepletion, affinity chromatography with α-d-galactose-binding lectin (from Artocarpus incisa seeds) immobilized on a Sepharose(TM) 4B gel, concentration, and digestion for subsequent analysis with nano-UPLC tandem nano-ESI-MS(E). The program Expression (E) was used to quantify differences in protein expression between groups. RESULTS: A total of 96 proteins were identified. Leucine-rich alpha-2-glycoprotein 1 (LRG1), Clusterin (CLU), thrombin (F2), heparin cofactor II (SERPIND1), alpha-2-macroglobulin (A2M), alpha-2-antiplasmin (SERPINF2), Alpha-1 antitrypsin (SERPINA1), Complement factor B (CFB) and Complement C3 (C3) were identified as candidate biomarkers for early diagnosis of B-ALL, as they were upregulated in the B-ALL group relative to the control and AIT groups. Expression levels of the candidate biomarkers did not differ significantly between the AIT and control groups, providing further evidence that the candidate biomarkers are present only in the disease state, as all patients achieved complete remission after treatment. CONCLUSION: A panel of protein biomarker candidates has been developed for pre-diagnosis of B-ALL and also provided information that would indicate a favorable response to treatment after induction therapy.

10.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1282-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457519

RESUMEN

Frutalin is an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and is a powerful tool for tumour biomarker discovery. The crystallization and preliminary X-ray diffraction analysis of this lectin, which was isolated from Artocarpus incisa seeds, are reported here. Frutalin was purified and submitted to mass-spectrometric analysis. Diverse masses at approximately 16 kDa were observed in the deconvoluted spectra, which support the presence of isoforms. The best frutalin crystals were grown within a week in 0.1 M citric acid pH 3.5 which contained 25% PEG 3350 as a precipitant at 293 K, and diffracted to a maximum resolution of 1.81 Å. The monoclinic crystals belonged to space group I2, with unit-cell parameters a = 76.17, b = 74.56, c = 118.98 Å, ß = 96.56°. A molecular-replacement solution was obtained which indicated the presence of four monomers per asymmetric unit. Crystallographic refinement of the structure is in progress.


Asunto(s)
Artocarpus/química , Galactosa/metabolismo , Galectinas/química , Lectinas/química , Semillas/química , Cristalización , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA