Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell ; 81(9): 1920-1934.e9, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33689748

RESUMEN

Transcription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes. Multiomics analysis reveals that inhibition of U2 snRNP function increases the duration of Pol II pausing in the promoter-proximal region, impairs recruitment of the pause release factor P-TEFb, and reduces Pol II elongation velocity at the beginning of genes. Our results indicate that efficient release of paused Pol II into active transcription elongation requires the formation of functional spliceosomes and that eukaryotic mRNA biogenesis relies on positive feedback from the splicing machinery to the transcription machinery.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Empalmosomas/enzimología , Elongación de la Transcripción Genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Células HeLa , Humanos , Células K562 , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/genética , Factores de Tiempo
2.
Eur Thyroid J ; 13(3)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805593

RESUMEN

Introduction: Thyroid hormones have systemic effects on the human body and play a key role in the development and function of virtually all tissues. They are regulated via the hypothalamic-pituitary-thyroid (HPT) axis and have a heritable component. Using genetic information, we applied tissue-specific transcriptome-wide association studies (TWAS) and plasma proteome-wide association studies (PWAS) to elucidate gene products related to thyrotropin (TSH) and free thyroxine (FT4) levels. Results: TWAS identified 297 and 113 transcripts associated with TSH and FT4 levels, respectively (25 shared), including transcripts not identified by genome-wide association studies (GWAS) of these traits, demonstrating the increased power of this approach. Testing for genetic colocalization revealed a shared genetic basis of 158 transcripts with TSH and 45 transcripts with FT4, including independent, FT4-associated genetic signals within the CAPZB locus that were differentially associated with CAPZB expression in different tissues. PWAS identified 18 and ten proteins associated with TSH and FT4, respectively (HEXIM1 and QSOX2 with both). Among these, the cognate genes of five TSH- and 7 FT4-associated proteins mapped outside significant GWAS loci. Colocalization was observed for five plasma proteins each with TSH and FT4. There were ten TSH and one FT4-related gene(s) significant in both TWAS and PWAS. Of these, ANXA5 expression and plasma annexin A5 levels were inversely associated with TSH (PWAS: P = 1.18 × 10-13, TWAS: P = 7.61 × 10-12 (whole blood), P = 6.40 × 10-13 (hypothalamus), P = 1.57 × 10-15 (pituitary), P = 4.27 × 10-15 (thyroid)), supported by colocalizations. Conclusion: Our analyses revealed new thyroid function-associated genes and prioritized candidates in known GWAS loci, contributing to a better understanding of transcriptional regulation and protein levels relevant to thyroid function.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sistema Hipotálamo-Hipofisario , Proteoma , Glándula Tiroides , Tirotropina , Tiroxina , Transcriptoma , Humanos , Glándula Tiroides/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Tirotropina/sangre , Tirotropina/metabolismo , Tiroxina/sangre , Tiroxina/metabolismo , Perfilación de la Expresión Génica
3.
Nat Genet ; 55(6): 995-1008, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277652

RESUMEN

The kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.


Asunto(s)
Riñón , Metaboloma , Riñón/metabolismo , Metabolómica
4.
Sci Rep ; 9(1): 2005, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765864

RESUMEN

Aging is associated with cognitive decline. Herein, we studied a large cohort of old age and young adult male rats and confirmed that, as a group, old  rats display poorer spatial learning and behavioral flexibility than younger adults. Surprisingly, when animals were clustered as good and bad performers, our data revealed that while in younger animals better cognitive performance was associated with longer dendritic trees and increased levels of synaptic markers in the hippocampus and prefrontal cortex, the opposite was found in the older group, in which better performance was associated with shorter dendrites and lower levels of synaptic markers. Additionally, in old, but not young individuals, worse performance correlated with increased levels of BDNF and the autophagy substrate p62, but decreased levels of the autophagy complex protein LC3. In summary, while for younger individuals "bigger is better", "smaller is better" is a more appropriate aphorism for older subjects.


Asunto(s)
Envejecimiento Cognitivo/fisiología , Animales , Autofagia , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estudios de Cohortes , Masculino , Neuronas/citología , Ratas , Ratas Wistar , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA