RESUMEN
The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics.
Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Portadoras/farmacología , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Neoplasias/patología , Péptidos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica , Rastreo Diferencial de Calorimetría , Péptidos de Penetración Celular , Dicroismo Circular , Humanos , Péptidos y Proteínas de Señalización Intercelular , Liposomas , Lípidos de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Péptidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Células Tumorales CultivadasRESUMEN
Brain tumors are an important cause of suffering and death. Glioblastoma are the most frequent primary tumors of the central nervous system in adults. They are associated with a very poor prognosis, since only 10% of GBM patients survive 5 years after diagnosis. Medulloblastoma are the most frequent brain malignancies in childhood; they affect the cerebellum in children under 10 years of age in 75% of cases. The current multimodal treatment comes at the expense of serious and often long-lasting side effects. Herein, we propose the synthesis of a library of novel alkoxyamines as anticancer drug candidates. The most efficient molecule, ALK4, was selected based on its ability to inhibit both survival and migration of GBM and MB cells in 2D cultures and in 3D tumor spheroids. A fluorescent derivative was used to show the early cytosolic accumulation of ALK4 in tumor cells. Spontaneous homolysis of ALK4 led to the release of alkyl radicals, which triggered the generation of reactive oxygen species, fragmentation of the mitochondrial network and ultimately apoptosis. To control its homolytic process, the selected alkoxyamine was bioconjugated to a peptide selectively recognized by matrix metalloproteases. This bioconjugate, named ALK4-MMPp, successfully inhibited survival, proliferation, and invasion of GBM and MB tumor micromasses. We further developed innovative brain and cerebellum organotypic models to monitor treatment response over time. It confirmed that ALK4-MMPp significantly impaired tumor progression, while no significant damage was observed on normal brain tissue. Lastly, we showed that ALK4-MMPp was well-tolerated in vivo by zebrafish embryos. This study provides a new strategy to control the activation of alkoxyamines, and revealed the bioconjugate ALK4-MMPp bioconjugate as a good anticancer drug candidate.
RESUMEN
BACKGROUND: Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge. METHODS: High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma. The role of the top gene hit was investigated by RNA interference, transcriptomics and immunohistochemistry in glioblastoma patient samples. Drug combination screen using a custom-made library of 88 compounds in association with six inhibitors of the identified glioblastoma vulnerabilities was performed to unveil pharmacological synergisms. Glioblastoma 3D spheroid, organotypic ex vivo and syngeneic orthotopic mouse models were used to validate synergistic treatments. FINDINGS: Nine targetable vulnerabilities were identified in glioblastoma and the top gene hit RRM1 was validated as an independent prognostic factor. The associations of CHK1/MEK and AURKA/BET inhibitors were identified as the most potent amongst 528 tested pairwise drug combinations and their efficacy was validated in 3D spheroid models. The high synergism of AURKA/BET dual inhibition was confirmed in ex vivo and in vivo glioblastoma models, without detectable toxicity. INTERPRETATION: Our work provides strong pre-clinical evidence of the efficacy of AURKA/BET inhibitor combination in glioblastoma and opens new therapeutic avenues for this unmet medical need. Besides, we established the proof-of-concept of a stepwise approach aiming at exploiting drug poly-pharmacology to unveil druggable cancer vulnerabilities and to fast-track the identification of synergistic combinations against refractory cancers. FUNDING: This study was funded by institutional grants and charities.
Asunto(s)
Antineoplásicos , Glioblastoma , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Aurora Quinasa A , Sinergismo Farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Combinación de MedicamentosRESUMEN
BACKGROUND INFORMATION: Previous studies have reported that cross-talk between integrins may be an important regulator of integrin-ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvß5/ß6 integrin represses α2ß1-dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial. RESULTS: Inhibition of convertases by the convertase inhibitor α1-PDX (α1-antitrypsin Portland variant), leading to the cell-surface expression of an uncleaved form of the αv integrin, stimulated cell migration toward type I collagen. Under convertase inhibition, α2ß1 engagement led to enhanced phosphorylation of both FAK (focal adhesion kinase) and MAPK (mitogen-activated protein kinase). This outside-in signalling stimulation was associated with increased levels of activated ß1 integrin located in larger than usual focal-adhesion structures and a cell migration that was independent of the PI3K (phosphoinositide 3-kinase)/Akt (also called protein kinase B) pathway. CONCLUSIONS: The increase in cell migration observed upon convertases inhibition appears to be due to the up-regulation of ß1 integrins and to their location in larger focal-adhesion structures. The endoproteolytic cleavage of αv subunits is necessary for αvß5/ß6 integrin to control α2ß1 function and could thus play an essential role in colon cancer cell migration.
Asunto(s)
Antígenos de Neoplasias/metabolismo , Integrina alfa2beta1/metabolismo , Integrina alfaV/metabolismo , Integrinas/metabolismo , Receptores de Vitronectina/metabolismo , Adhesión Celular , Movimiento Celular , Colágeno Tipo I/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , alfa 1-Antitripsina/biosíntesisRESUMEN
BACKGROUND: Medulloblastoma is the most frequent brain malignancy of childhood. The current multimodal treatment comes at the expense of serious and often long-lasting side effects. Drug repurposing is a strategy to fast-track anti-cancer therapy with low toxicity. Here, we showed the ability of ß-blockers to potentiate radiotherapy in medulloblastoma with bad prognosis. METHODS: Medulloblastoma cell lines, patient-derived xenograft cells, 3D spheroids and an innovative cerebellar organotypic model were used to identify synergistic interactions between ß-blockers and ionising radiations. Gene expression profiles of ß-adrenergic receptors were analysed in medulloblastoma samples from 240 patients. Signaling pathways were explored by RT-qPCR, RNA interference, western blotting and RNA sequencing. Medulloblastoma cell bioenergetics were evaluated by measuring the oxygen consumption rate, the extracellular acidification rate and superoxide production. FINDINGS: Low concentrations of ß-blockers significantly potentiated clinically relevant radiation protocols. Although patient biopsies showed detectable expression of ß-adrenergic receptors, the ability of the repurposed drugs to potentiate ionising radiations did not result from the inhibition of the canonical signaling pathway. We highlighted that the efficacy of the combinatorial treatment relied on a metabolic catastrophe that deprives medulloblastoma cells of their adaptive bioenergetics capacities. This led to an overproduction of superoxide radicals and ultimately to an increase in ionising radiations-mediated DNA damages. INTERPRETATION: These data provide the evidence of the efficacy of ß-blockers as potentiators of radiotherapy in medulloblastoma, which may help improve the treatment and quality of life of children with high-risk brain tumours. FUNDING: This study was funded by institutional grants and charities.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Metabolismo Energético , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/radioterapia , Calidad de Vida , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta/uso terapéutico , SuperóxidosRESUMEN
Despite recent advances in deciphering cancer drug resistance mechanisms, relapse is a widely observed phenomenon in advanced cancers, mainly due to intratumor clonal heterogeneity. How tumor clones progress and impact each other remains elusive. In this study, we developed 2D and 3D non-small cell lung cancer co-culture systems and defined a phenomenological mathematical model to better understand clone dynamics. Our results demonstrated that the drug-sensitive clones inhibit the proliferation of the drug-resistant ones under untreated conditions. Model predictions and their experimental in vitro and in vivo validations indicated that a metronomic schedule leads to a better regulation of tumor cell heterogeneity over time than a maximum-tolerated dose schedule, while achieving control of tumor progression. We finally showed that drug-sensitive and -resistant clones exhibited different metabolic statuses that could be involved in controlling the intratumor heterogeneity dynamics. Our data suggested that the glycolytic activity of drug-sensitive clones could play a major role in inhibiting the drug-resistant clone proliferation. Altogether, these computational and experimental approaches provide foundations for using metronomic therapy to control drug-sensitive and -resistant clone balance and highlight the potential of targeting cell metabolism to manage intratumor heterogeneity.
RESUMEN
Crosstalk between integrins is involved in the regulation of various cell functions including cell migration. Here we identify the interplay between the integrins alphavbeta5/beta6 and alpha2beta1 during cell migration toward type I collagen. Human colon cancer cell lines HT29-D4 and SW480 were used as cell models. To improve our understanding of the consequences of alphavbeta5/beta6 function on alpha2beta1, we decreased the expression of alphav integrins by either siRNA or lysosomal targeting strategies or inhibited their function using, as antagonists, blocking antibodies or disintegrins. In all cases, we observed a greatly enhanced alpha2beta1 integrin-dependent cell migration associated with focal adhesion rearrangements and increased outside-in signaling as demonstrated by elevated phosphorylation of focal adhesion kinase and MAPKinase (ERK1 and ERK2). The alphavbeta5/beta6-dependent limitation of alpha2beta1 function could be overridden by TS2/16, an activating anti-beta1 antibody. Interestingly, compared to control cells, the pharmacological inhibition of PI3Kinase or the siRNA-mediated knockdown of AKT had little effect on the high alpha2beta1-mediated cell migration observed in the absence of alphav integrins or following activation of alpha2beta1 integrins by the TS2/16. These results suggest that integrins alphavbeta5/beta6 repress alpha2beta1 possibly by interfering with their activation process and thereby modify the cell signaling regulation of alpha2beta1-mediated migration.
Asunto(s)
Movimiento Celular/fisiología , Integrina alfa2beta1/fisiología , Integrinas/antagonistas & inhibidores , Proteína Oncogénica v-akt/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores de Vitronectina/antagonistas & inhibidores , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Adhesiones Focales , Humanos , Integrina alfa2beta1/antagonistas & inhibidores , Integrina alfa2beta1/genética , Integrinas/genética , Integrinas/fisiología , Proteína Oncogénica v-akt/genética , Proteína Oncogénica v-akt/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/genética , Receptores de Vitronectina/genética , Receptores de Vitronectina/fisiología , Transducción de SeñalRESUMEN
Metabolic reprogramming is a hallmark of cancer development, mediated by genetic and epigenetic alterations that may be pharmacologically targeted. Among oncogenes, the kinase Akt is commonly overexpressed in tumors and favors glycolysis, providing a rationale for using Akt inhibitors. Here, we addressed the question of whether and how inhibiting Akt activity could improve therapy of non-small cell lung cancer (NSCLC) that represents more than 80% of all lung cancer cases. First, we demonstrated that Akt inhibitors interacted synergistically with Microtubule-Targeting Agents (MTAs) and specifically in cancer cell lines, including those resistant to chemotherapy agents and anti-EGFR targeted therapies. In vivo, we further revealed that the chronic administration of low-doses of paclitaxel - i.e. metronomic scheduling - and the anti-Akt perifosine was the most efficient and the best tolerated treatment against NSCLC. Regarding drug mechanism of action, perifosine potentiated the pro-apoptotic effects of paclitaxel, independently of cell cycle arrest, and combining paclitaxel/perifosine resulted in a sustained suppression of glycolytic and mitochondrial metabolism. This study points out that targeting cancer cell bioenergetics may represent a novel therapeutic avenue in NSCLC, and provides a strong foundation for future clinical trials of metronomic MTAs combined with Akt inhibitors.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Metabolismo Energético/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Técnicas de Cultivo de Célula , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glucólisis , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Mitocondrias/metabolismo , Paclitaxel/farmacología , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Recent clinical evidence revealed that the use of beta-blockers such as propranolol, prior to diagnosis or concurrently with chemotherapy, could increase relapse-free and overall survival in breast cancer patients. We therefore hypothesized that propranolol may be able to increase the efficacy of chemotherapy either through direct effects on cancer cells or via anti-angiogenic mechanisms. In vitro proliferation assay showed that propranolol (from 50-100 µM) induces dose-dependent anti-proliferative effects in a panel of 9 human cancer and "normal" cell lines. Matrigel assays revealed that propranolol displays potent anti-angiogenic properties at non-toxic concentrations (less than 50 µM) but exert no vascular-disrupting activity. Combining chemotherapeutic drugs, such as 5-fluorouracil (5-FU) or paclitaxel, with propranolol at the lowest effective concentration resulted in synergistic, additive or antagonistic effects on cell proliferation in vitro depending on the cell type and the dose of chemotherapy used. Interestingly, breast cancer and vascular endothelial cells were among the most responsive to these combinations. Furthermore, Matrigel assays indicated that low concentrations of propranolol (10 - 50 µM) potentiated the anti-angiogenic effects of 5-FU and paclitaxel. Using an orthotopic xenograft model of triple-negative breast cancer, based on s.c injection of luciferase-expressing MDA-MB-231 cells in the mammary fat pad of nude mice, we showed that propranolol, when used alone, induced only transient anti-tumor effects, if at all, and did not increase median survival. However, the combination of propranolol with chemotherapy resulted in more profound and sustained anti-tumor effects and significantly increased the survival benefits induced by chemotherapy alone (+19% and +79% in median survival for the combination as compared with 5-FU alone and paclitaxel alone, respectively; p less than 0.05). Collectively our results show that propranolol can potentiate the anti-angiogenic effects and anti-tumor efficacy of chemotherapy. The current study, together with retrospective clinical data, strongly suggests that the use of propranolol concurrently with chemotherapy may improve the outcome of breast cancer patients, thus providing a strong rationale for the evaluation of this drug combination in prospective clinical studies.
Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Propranolol/uso terapéutico , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/irrigación sanguínea , Línea Celular Tumoral , Sinergismo Farmacológico , Endotelio Vascular/citología , Femenino , Fluorouracilo/uso terapéutico , Humanos , Ratones , Ratones Desnudos , Paclitaxel/uso terapéuticoRESUMEN
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the cessation of inflammation and the migration of enterocytes to repair the damaged epithelium. Lyophilized Saccharomyces boulardii (Sb, Biocodex) is a nonpathogenic yeast widely used as a therapeutic agent for the treatment and prevention of diarrhea and other gastrointestinal disorders. In this study, we determined whether Sb could accelerate enterocyte migration. Cell migration was determined in Sb force-fed C57BL6J mice and in an in vitro wound model. The impact on α2ß1 integrin activity was assessed using adhesion assays and the analysis of α2ß1 mediated signaling pathways both in vitro and in vivo. We demonstrated that Sb secretes compounds that enhance the migration of enterocytes independently of cell proliferation. This enhanced migration was associated with the ability of Sb to favor cell-extracellular matrix interaction. Indeed, the yeast activates α2ß1 integrin collagen receptors. This leads to an increase in tyrosine phosphorylation of cytoplasmic molecules, including focal adhesion kinase and paxillin, involved in the integrin signaling pathway. These changes are associated with the reorganization of focal adhesion structures. In conclusion Sb secretes motogenic factors that enhance cell restitution through the dynamic regulation of α2ß1 integrin activity. This could be of major importance in the development of novel therapies targeting diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.
Asunto(s)
Integrina alfa2beta1/metabolismo , Probióticos/farmacología , Probióticos/uso terapéutico , Receptores de Colágeno/metabolismo , Saccharomyces , Animales , Células CACO-2 , Adhesión Celular , Movimiento Celular/efectos de los fármacos , Enterocitos/citología , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Femenino , Células HT29 , Humanos , Inmunohistoquímica , RatonesRESUMEN
As described for a long time, carcinoma-derived Caco-2 cells form a polarized epithelium in culture, whereas HT29-D4 cells are nonpolarized and undifferentiated but can form a polarized monolayer when cultured in a galactose-supplemented medium. Using NF-kappaB translocation and IL-8 and ICAM-1 gene activation as an index, we have studied the relationship between the differentiation state and the cell response to cytokines. We found that differentiated Caco-2 and HT29-D4 cells were responsive to both cytokines TNFalpha- and IL-1beta-mediated activation of NF-kappaB but that undifferentiated HT29-D4 cells were unresponsive to IL-1beta. However, the expression of endogenous ICAM-1 and IL-8 genes was upregulated by these cytokines in either cell lines differentiated or not. Upregulation of ICAM-1 gene occurred when IL-1beta or TNFalpha was added to the basal, but not apical surface of the differentiated epithelia. Finally, it appeared that in polarized HT29-D4 cells, the IL-1beta-induced translocation of NF-kappaB was connected to PKCdelta translocation.