Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074910

RESUMEN

E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Factores de Transcripción/metabolismo , Animales , Biomarcadores , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Mitosis , Sistemas de Lectura Abierta , Procesamiento Postranscripcional del ARN , Estrés Fisiológico/genética , Regiones no Traducidas , Alas de Animales/metabolismo
2.
PLoS Genet ; 15(9): e1008376, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31487280

RESUMEN

Phosphoribosyl pyrophosphate synthetase (PRPS) is a rate-limiting enzyme whose function is important for the biosynthesis of purines, pyrimidines, and pyridines. Importantly, while missense mutations of PRPS1 have been identified in neurological disorders such as Arts syndrome, how they contribute to neuropathogenesis is still unclear. We identified the Drosophila ortholog of PRPS (dPRPS) as a direct target of RB/E2F in Drosophila, a vital cell cycle regulator, and engineered dPRPS alleles carrying patient-derived mutations. Interestingly, while they are able to develop normally, dPRPS mutant flies have a shortened lifespan and locomotive defects, common phenotypes associated with neurodegeneration. Careful analysis of the fat body revealed that patient-derived PRPS mutations result in profound defects in lipolysis, macroautophagy, and lysosome function. Significantly, we show evidence that the nervous system of dPRPS mutant flies is affected by these defects. Overall, we uncovered an unexpected link between nucleotide metabolism and autophagy/lysosome function, providing a possible mechanism by which PRPS-dysfunction contributes to neurological disorders.


Asunto(s)
Autofagia/genética , Lisosomas/genética , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Pleiotropía Genética/genética , Lisosomas/metabolismo , Mutación , Mutación Missense , Proteostasis/genética , Ribosa-Fosfato Pirofosfoquinasa/genética , Ribosa-Fosfato Pirofosfoquinasa/fisiología
3.
PLoS Genet ; 14(2): e1007204, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29420631

RESUMEN

Across metazoans, cell cycle progression is regulated by E2F family transcription factors that can function as either transcriptional activators or repressors. For decades, the Drosophila E2F family has been viewed as a streamlined RB/E2F network, consisting of one activator (dE2F1) and one repressor (dE2F2). Here, we report that an uncharacterized isoform of dE2F1, hereon called dE2F1b, plays an important function during development and is functionally distinct from the widely-studied dE2F1 isoform, dE2F1a. dE2F1b contains an additional exon that inserts 16 amino acids to the evolutionarily conserved Marked Box domain. Analysis of de2f1b-specific mutants generated via CRISPR/Cas9 indicates that dE2F1b is a critical regulator of the cell cycle during development. This is particularly evident in endocycling salivary glands in which a tight control of dE2F1 activity is required. Interestingly, close examination of mitotic tissues such as eye and wing imaginal discs suggests that dE2F1b plays a repressive function as cells exit from the cell cycle. We also provide evidence demonstrating that dE2F1b differentially interacts with RBF1 and alters the recruitment of RBF1 and dE2F1 to promoters. Collectively, our data suggest that dE2F1b is a novel member of the E2F family, revealing a previously unappreciated complexity in the Drosophila RB/E2F network.


Asunto(s)
Empalme Alternativo/genética , Ciclo Celular/genética , Factor de Transcripción E2F1/genética , Animales , Animales Modificados Genéticamente , División Celular/genética , Células Cultivadas , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Factor de Transcripción E2F1/química , Embrión no Mamífero , Ojo/embriología , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Organogénesis/genética , Dominios Proteicos/genética , Proteína de Retinoblastoma/fisiología
5.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650483

RESUMEN

While a plethora of genetic techniques have been developed over the past century, modifying specific sequences of the fruit fly genome has been a difficult, if not impossible task. clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 truly redefined molecular genetics and provided new tools to model human diseases in Drosophila melanogaster. This is particularly true for genes whose protein sequences are highly conserved. Phosphoribosyl pyrophosphate synthetase (PRPS) is a rate-limiting enzyme in nucleotide metabolism whose missense mutations are found in several neurological disorders, including Arts syndrome. In addition, PRPS is deregulated in cancer, particularly those that become resistant to cancer therapy. Notably, Drosophila PRPS shares about 90% protein sequence identity with its human orthologs, making it an ideal gene to study via CRISPR/Cas9. In this review, we will summarize recent findings on PRPS mutations in human diseases including cancer and on the molecular mechanisms by which PRPS activity is regulated. We will also discuss potential applications of Drosophila CRISPR/Cas9 to model PRPS-dependent disorders and other metabolic diseases that are associated with nucleotide metabolism.


Asunto(s)
Ataxia/genética , Trastornos Sordoceguera/genética , Drosophila melanogaster/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Ribosa-Fosfato Pirofosfoquinasa/genética , Animales , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Edición Génica/métodos , Humanos , Mutación/genética
6.
Dev Biol ; 411(2): 195-206, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26859702

RESUMEN

The E2F family of transcription factors are evolutionarily conserved regulators of the cell cycle that can be divided into two groups based on their ability to either activate or repress transcription. In Drosophila, there is only one "activator" E2F, dE2F1, which provides all of the pro-proliferative activity of E2F during development. Interestingly, the de2f1 gene can be transcribed from multiple promoters resulting in six alternate transcripts. In this study, we sought to investigate the biological significance of the alternate transcriptional start sites. We focused on the de2f1 promoter region where tissue and cell-type specific enhancer activities were observed at the larval stage. While a genomic deletion of this region, de2f1(ΔRA), decreased the overall expression level of dE2F1, flies developed normally with no obvious proliferation defects. However, a detailed analysis of the de2f1(ΔRA) mutant eye imaginal discs revealed that dE2F1 is needed for proper cell cycle exit. We discovered that dE2F1 expression during G1 arrest prior to the differentiation process of the developing eye is important for maintaining cell cycle arrest at a later stage of the eye development. Overall, our study suggests that specific alternate transcripts of "activator" E2F, dE2F1, may have a dual function on cell cycle progression and cannot simply be viewed as a pro-proliferative transcription factor.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/fisiología , Regulación del Desarrollo de la Expresión Génica , Animales , Ciclo Celular , Diferenciación Celular , División Celular , Cruzamientos Genéticos , Ojo/embriología , Fase G1 , Hibridación in Situ , Mutación , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción , Transcripción Genética
7.
PLoS Genet ; 8(4): e1002618, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496667

RESUMEN

Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes.


Asunto(s)
Adenosina Trifosfatasas , Péptidos Catiónicos Antimicrobianos , Proteínas de Drosophila , Drosophila melanogaster , Inmunidad Innata , Factores de Transcripción , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Cuerpo Adiposo/citología , Cuerpo Adiposo/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata/genética , Familia de Multigenes , Especificidad de Órganos , Fagocitosis/genética , Cromosomas Politénicos/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Proteína de Retinoblastoma , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Nature ; 455(7212): 552-6, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18794899

RESUMEN

The E2F1 transcription factor can promote proliferation or apoptosis when activated, and is a key downstream target of the retinoblastoma tumour suppressor protein (pRB). Here we show that E2F1 is a potent and specific inhibitor of beta-catenin/T-cell factor (TCF)-dependent transcription, and that this function contributes to E2F1-induced apoptosis. E2F1 deregulation suppresses beta-catenin activity in an adenomatous polyposis coli (APC)/glycogen synthase kinase-3 (GSK3)-independent manner, reducing the expression of key beta-catenin targets including c-MYC. This interaction explains why colorectal tumours, which depend on beta-catenin transcription for their abnormal proliferation, keep RB1 intact. Remarkably, E2F1 activity is also repressed by cyclin-dependent kinase-8 (CDK8), a colorectal oncoprotein. Elevated levels of CDK8 protect beta-catenin/TCF-dependent transcription from inhibition by E2F1. Thus, by retaining RB1 and amplifying CDK8, colorectal tumour cells select conditions that collectively suppress E2F1 and enhance the activity of beta-catenin.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/metabolismo , Proteína de Retinoblastoma/metabolismo , Transcripción Genética , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Apoptosis , Línea Celular , Quinasa 8 Dependiente de Ciclina , Regulación de la Expresión Génica , Genes myc/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Proteína de Retinoblastoma/genética , Transducción de Señal , Factores de Transcripción TCF/metabolismo , Proteínas Wnt/metabolismo
9.
Dev Cell ; 14(1): 1-3, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18194644

RESUMEN

An article by Li and colleagues (in this issue of Developmental Cell) shows that the atypical E2Fs, E2F7 and E2F8, are critical for mouse development. One of the important functions of these family members stems from a negative feedback loop in which E2F7 and E2F8 limit the expression of E2F1 and prevent E2F1-dependent apoptosis.


Asunto(s)
Supervivencia Celular/fisiología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/fisiología , Factor de Transcripción E2F7/deficiencia , Factor de Transcripción E2F7/fisiología , Desarrollo Embrionario/fisiología , Proteínas Represoras/fisiología , Animales , Ratones , Ratones Noqueados
10.
J Cell Sci ; 124(Pt 24): 4203-12, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22193959

RESUMEN

Retinoblastoma tumor suppressor protein (pRb) regulates various biological processes during development and tumorigenesis. Although the molecular mechanism by which pRb controls cell cycle progression is well characterized, how pRb promotes cell-type specification and differentiation is less understood. Here, we report that Extra Macrochaetae (EMC), the Drosophila homolog of inhibitor of DNA binding/differentiation (ID), is an important protein contributing to the developmental defects caused by Rb deficiency. An emc allele was identified from a genetic screen designed to identify factors that, when overexpressed, cooperate with mutations in rbf1, which encodes one of the two Rb proteins found in Drosophila. EMC overexpression in an rbf1 hypomorphic mutant background induces cone cell and photoreceptor defects but has negligible effects in the wild-type background. Interestingly, a substantial fraction of the rbf1-null ommatidia normally exhibit similar cone cell and photoreceptor defects in the absence of ectopic EMC expression. Detailed EMC expression analyses revealed that RBF1 suppresses expression of both endogenous and ectopic EMC protein in photoreceptors, thus explaining the synergistic effect between EMC overexpression and rbf1 mutations, and the developmental defect observed in rbf1-null ommatidia. Our findings demonstrate that ID family proteins are an evolutionarily conserved determinant of Rb-deficient cells, and play an important role during development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Células Fotorreceptoras de Invertebrados/citología , Proteínas Represoras/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Proteína de Retinoblastoma/genética , Factores de Transcripción/genética , Animales , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/deficiencia , Ojo/anatomía & histología , Ojo/crecimiento & desarrollo , Ojo/ultraestructura , Mutación , Proteína de Retinoblastoma/deficiencia , Factores de Transcripción/deficiencia
11.
PLoS Genet ; 6(8): e1001071, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20808898

RESUMEN

Previous studies in Drosophila melanogaster have demonstrated that many tumor suppressor pathways impinge on Rb/E2F to regulate proliferation and survival. Here, we report that Tuberous Sclerosis Complex 1 (TSC1), a well-established tumor suppressor that regulates cell size, is an important regulator of dE2F1 during development. In eye imaginal discs, the loss of tsc1 cooperates with rbf1 mutations to promote ectopic S-phase and cell death. This cooperative effect between tsc1 and rbf1 mutations can be explained, at least in part, by the observation that TSC1 post-transcriptionally regulates dE2F1 expression. Clonal analysis revealed that the protein level of dE2F1 is increased in tsc1 or tsc2 mutant cells and conversely decreased in rheb or dTor mutant cells. Interestingly, while s6k mutations have no effect on dE2F1 expression in the wild-type background, S6k is absolutely required for the increase of dE2F1 expression in tsc2 mutant cells. The canonical TSC/Rheb/Tor/S6k pathway is also an important determinant of dE2F1-dependent cell death, since rheb or s6k mutations suppress the developmentally regulated cell death observed in rbf1 mutant eye discs. Our results provide evidence to suggest that dE2F1 is an important cell cycle regulator that translates the growth-promoting signal downstream of the TSC/Rheb/Tor/S6k pathway.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ojo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Supervivencia Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/metabolismo , Mutación , Proteína de Retinoblastoma , Transducción de Señal
12.
PLoS Genet ; 6(4): e1000918, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20421993

RESUMEN

Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Retina/metabolismo , Proteína de Retinoblastoma/genética , Transducción de Señal , Factores de Transcripción/genética , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo
13.
PLoS Genet ; 4(8): e1000153, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18688282

RESUMEN

In mammalian cells, RB/E2F and p53 are intimately connected, and crosstalk between these pathways is critical for the induction of cell cycle arrest or cell death in response to cellular stresses. Here we have investigated the genetic interactions between RBF/E2F and p53 pathways during Drosophila development. Unexpectedly, we find that the pro-apoptotic activities of E2F and p53 are independent of one another when examined in the context of Drosophila development: apoptosis induced by the deregulation of dE2F1, or by the overexpression of dE2F1, is unaffected by the elimination of dp53; conversely, dp53-induced phenotypes are unaffected by the elimination of dE2F activity. However, dE2F and dp53 converge in the context of a DNA damage response. Both dE2F1/dDP and dp53 are required for DNA damage-induced cell death, and the analysis of rbf1 mutant eye discs indicates that dE2F1/dDP and dp53 cooperatively promote cell death in irradiated discs. In this context, the further deregulation in the expression of pro-apoptotic genes generates an additional sensitivity to apoptosis that requires both dE2F/dDP and dp53 activity. This sensitivity differs from DNA damage-induced apoptosis in wild-type discs (and from dE2F/dDP-induced apoptosis in un-irradiated rbf1 mutant eye discs) by being dependent on both hid and reaper. These results show that pro-apoptotic activities of dE2F1 and dp53 are surprisingly separable: dp53 is required for dE2F-dependent apoptosis in the response to DNA damage, but it is not required for dE2F-dependent apoptosis caused simply by the inactivation of rbf1.


Asunto(s)
Apoptosis , Daño del ADN , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/fisiología , Factores de Transcripción E2F/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína p53 Supresora de Tumor/metabolismo , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Factores de Transcripción E2F/genética , Femenino , Masculino , Proteína de Retinoblastoma , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
14.
Genetics ; 217(1): 1-15, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33683365

RESUMEN

Polyploidy is an integral part of development and is associated with cellular stress, aging, and pathological conditions. The endocycle, comprised of successive rounds of G and S phases without mitosis, is widely employed to produce polyploid cells in plants and animals. In Drosophila, maintenance of the endocycle is dependent on E2F-governed oscillations of Cyclin E (CycE)-Cdk2 activity, which is known to be largely regulated at the level of transcription. In this study, we report an additional level of E2F-dependent control of CycE-Cdk2 activity during the endocycle. Genetic experiments revealed that an alternative isoform of Drosophila de2f1, dE2F1b, regulates the expression of the p27CIP/KIP-like Cdk inhibitor Dacapo (Dap). We provide evidence showing that dE2F1b-dependent Dap expression in endocycling tissues is necessary for setting proper CycE-Cdk2 activity. Furthermore, we demonstrate that dE2F1b is required for proliferating cell nuclear antigen expression that establishes a negative feedback loop in S phase. Overall, our study reveals previously unappreciated E2F-dependent regulatory networks that are critical for the periodic transition between G and S phases during the endocycle.


Asunto(s)
Ciclo Celular , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Retroalimentación Fisiológica , Proteínas Nucleares/genética , Poliploidía , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción/genética
15.
Curr Biol ; 17(9): 808-12, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17462898

RESUMEN

Histone-tail modifications play a fundamental role in the processes that establish chromatin structure and determine gene expression. One such modification, histone methylation, was considered irreversible until the recent discovery of histone demethylases. Lsd1 was the first histone demethylase to be identified. Lsd1 is highly conserved in many species, from yeast to humans, but its function has primarily been studied through biochemical approaches. The mammalian ortholog has been shown to demethylate monomethyl- and dimethyl-K4 and -K9 residues of histone H3. Here we describe the effects of Lsd1 mutation in Drosophila. The inactivation of dLsd1 strongly affects the global level of monomethyl- and dimethyl-H3-K4 methylation and results in elevated expression of a subset of genes. dLsd1 is not an essential gene, but animal viability is strongly reduced in mutant animals in a gender-specific manner. Interestingly, dLsd1 mutants are sterile and possess defects in ovary development, indicating that dLsd1 has tissue-specific functions. Mutant alleles of dLsd1 suppress positional-effect variegation, suggesting a disruption of the balance between euchromatin and heterochromatin. Taken together, these results show that dLsd1-mediated H3-K4 demethylation has a significant and specific role in Drosophila development.


Asunto(s)
Metilación de ADN , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Fenotipo , Animales , Western Blotting , Drosophila/embriología , Proteínas de Drosophila/genética , Mutación/genética , Oxidorreductasas N-Desmetilantes/genética
16.
Dev Cell ; 9(4): 463-75, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16198289

RESUMEN

E2F transcription factors are generally believed to be positive regulators of apoptosis. In this study, we show that dE2F1 and dDP are important for the normal pattern of DNA damage-induced apoptosis in Drosophila wing discs. Unexpectedly, the role that E2F plays varies depending on the position of the cells within the disc. In irradiated wild-type discs, intervein cells show a high level of DNA damage-induced apoptosis, while cells within the D/V boundary are protected. In irradiated discs lacking E2F regulation, intervein cells are largely protected, but apoptotic cells are found at the D/V boundary. The protective effect of E2F at the D/V boundary is due to a spatially restricted role in the repression of hid. These loss-of-function experiments demonstrate that E2F cannot be classified simply as a pro- or antiapoptotic factor. Instead, the overall role of E2F in the damage response varies greatly and depends on the cellular context.


Asunto(s)
Apoptosis/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Estructuras Embrionarias , Animales , Daño del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Estructuras Embrionarias/anatomía & histología , Estructuras Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Hibridación in Situ , Mutación , Neuropéptidos/genética , Neuropéptidos/metabolismo , Interferencia de ARN
17.
Mol Cell Biol ; 26(20): 7601-15, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16954388

RESUMEN

The inactivation of retinoblastoma (Rb) family members sensitizes cells to apoptosis. This cell death affects the development of mutant animals and also provides a critical constraint to the malignant potential of Rb mutant tumor cells. The extent of apoptosis caused by the inactivation of Rb is highly cell type and tissue specific, but the underlying reasons for this variation are poorly understood. Here, we characterize a specific time and place during Drosophila melanogaster development where rbf1 mutant cells are exquisitely sensitive to apoptosis. During the third larval instar, many rbf1 mutant cells undergo E2F-dependent cell death in the morphogenetic furrow. Surprisingly, this pattern of apoptosis is not caused by inappropriate cell cycle progression but instead involves the action of Argos, a secreted protein that negatively regulates Drosophila epidermal growth factor receptor (EGFR [DER]) activity. Apoptosis of rbf1 mutant cells is suppressed by the activation of DER, ras, or raf or by the inactivation of argos, sprouty, or gap1, and inhibition of DER strongly enhances apoptosis in rbf1 mutant discs. We show that RBF1 and a DER/ras/raf signaling pathway cooperate in vivo to suppress E2F-dependent apoptosis and that the loss of RBF1 alters a normal program of cell death that is controlled by Argos and DER. These results demonstrate that a gradient of DER/ras/raf signaling that occurs naturally during development provides the contextual signals that determine when and where the inactivation of rbf1 results in dE2F1-dependent apoptosis.


Asunto(s)
Apoptosis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factor de Transcripción E2F1/genética , Ojo/citología , Ojo/metabolismo , Regulación de la Expresión Génica , Mutación/genética , Proteína de Retinoblastoma , Sensibilidad y Especificidad , Factores de Transcripción/genética
18.
PLoS Genet ; 2(11): e196, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-17112319

RESUMEN

Retinoblastoma protein and E2-promoter binding factor (E2F) family members are important regulators of G1-S phase progression. Deregulated E2F also sensitizes cells to apoptosis, but this aspect of E2F function is poorly understood. Studies of E2F-induced apoptosis have mostly been carried out in tissue culture cells, and the analysis of the factors that are important for this process has been restricted to the testing of a few candidate genes. Using Drosophila as a model system, we have generated tools that allow genetic modifiers of E2F-dependent apoptosis to be identified in vivo and developed assays that allow effects on E2F-induced apoptosis to be studied in cultured cells. Genetic interactions show that dE2F1-dependent apoptosis in vivo involves dArk/Apaf1 apoptosome-dependent activation of both initiator and effector caspases and is sensitive to levels of Drosophila inhibitor of apoptosis-1 (dIAP1). Using these approaches, we report the surprising finding that apoptosis inhibitor-5/antiapoptosis clone-11 (Api5/Aac11) is a critical determinant of dE2F1-induced apoptosis in vivo and in vitro. This functional interaction occurs in multiple tissues, is specific to E2F-induced apoptosis, and is conserved from flies to humans. Interestingly, Api5/Aac11 acts downstream of E2F and suppresses E2F-dependent apoptosis without generally blocking E2F-dependent transcription. Api5/Aac11 expression is often upregulated in tumor cells, particularly in metastatic cells. We find that depletion of Api5 is tumor cell lethal. The strong genetic interaction between E2F and Api5/Aac11 suggests that elevated levels of Api5 may be selected during tumorigenesis to allow cells with deregulated E2F activity to survive under suboptimal conditions. Therefore, inhibition of Api5 function might offer a possible mechanism for antitumor exploitation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteínas Nucleares/metabolismo , Supresión Genética , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/química , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Factor de Transcripción E2F1/genética , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Fenotipo , Interferencia de ARN , Proteína de Retinoblastoma , Factores de Transcripción/metabolismo , Transcripción Genética , Células Tumorales Cultivadas
19.
Sci Rep ; 9(1): 13779, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551467

RESUMEN

In Drosophila melanogaster there are two genes encoding ribosomal protein S5, RpS5a and RpS5b. Here, we demonstrate that RpS5b is required for oogenesis. Females lacking RpS5b produce ovaries with numerous developmental defects that undergo widespread apoptosis in mid-oogenesis. Females lacking germline RpS5a are fully fertile, but germline expression of interfering RNA targeting germline RpS5a in an RpS5b mutant background worsened the RpS5b phenotype and blocked oogenesis before egg chambers form. A broad spectrum of mRNAs co-purified in immunoprecipitations with RpS5a, while RpS5b-associated mRNAs were specifically enriched for GO terms related to mitochondrial electron transport and cellular metabolic processes. Consistent with this, RpS5b mitochondrial fractions are depleted for proteins linked to oxidative phosphorylation and mitochondrial respiration, and RpS5b mitochondria tended to form large clusters and had more heterogeneous morphology than those from controls. We conclude that RpS5b-containing ribosomes preferentially associate with particular mRNAs and serve an essential function in oogenesis.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Oogénesis/genética , Isoformas de Proteínas/genética , ARN/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Animales , Animales Modificados Genéticamente/genética , Apoptosis/genética , Femenino , Células Germinativas/fisiología , Mitocondrias/genética , Oocitos/fisiología , Ovario/fisiología
20.
Mol Cell Biol ; 25(8): 3027-39, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15798191

RESUMEN

To gain insight into the essential functions of E2F, we have examined the phenotypes caused by complete inactivation of E2F and DP family members in Drosophila. Our results show that dDP requires dE2F1 and dE2F2 for DNA-binding activity in vitro and in vivo. In tissue culture cells and in mutant animals, the levels of dE2F and dDP proteins are strongly interdependent. In the absence of dDP, the levels of dE2F1 and dE2F2 decline dramatically, and vice versa. Accordingly, the cell cycle and transcriptional phenotypes caused by targeting dDP mimic the effects of targeting both dE2F1 and dE2F2 and are indistinguishable from the effects of inactivating all three proteins. Although trans-heterozygous dDP mutant animals develop to late pupal stages, the analysis of somatic mutant clones shows that dDP mutant cells are at a severe proliferative disadvantage when compared directly with wild-type neighbors. Strikingly, the timing of S-phase entry or exit is not delayed in dDP mutant clones, nor is the accumulation of cyclin A or cyclin B. However, the maximal level of bromodeoxyuridine incorporation is reduced in dDP mutant clones, and RNA interference experiments show that dDP-depleted cells are prone to stall in S phase. In addition, dDP mutant clones contain reduced numbers of mitotic cells, indicating that dDP mutant cells have a defect in G2/M-phase progression. Thus, dDP is not essential for developmental control of the G1-to-S transition, but it is required for normal cell proliferation, for optimal DNA synthesis, and for efficient G2/M progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Transactivadores/fisiología , Factores de Transcripción/metabolismo , Animales , Cromosomas/química , Cromosomas/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Factores de Transcripción E2F , Factor de Transcripción E2F2 , Ojo/química , Mitosis/genética , Mitosis/fisiología , Mutación/genética , Fenotipo , Interferencia de ARN , Fase S/genética , Fase S/fisiología , Transactivadores/análisis , Transactivadores/genética , Factores de Transcripción/análisis , Transcripción Genética/genética , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA