Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(1): 221-32, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22981225

RESUMEN

Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Although it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. Using the zebrafish model, we demonstrate that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions.


Asunto(s)
Diferenciación Celular , Cromatina , Células Madre Embrionarias/metabolismo , Corazón/embriología , Miocardio/citología , Animales , Epigénesis Genética , Proteínas de Homeodominio/metabolismo , Humanos , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
2.
Cell ; 136(6): 1136-47, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303855

RESUMEN

Interactions between developmental signaling pathways govern the formation and function of stem cells. Prostaglandin (PG) E2 regulates vertebrate hematopoietic stem cells (HSC). Similarly, the Wnt signaling pathway controls HSC self-renewal and bone marrow repopulation. Here, we show that wnt reporter activity in zebrafish HSCs is responsive to PGE2 modulation, demonstrating a direct interaction in vivo. Inhibition of PGE2 synthesis blocked wnt-induced alterations in HSC formation. PGE2 modified the wnt signaling cascade at the level of beta-catenin degradation through cAMP/PKA-mediated stabilizing phosphorylation events. The PGE2/Wnt interaction regulated murine stem and progenitor populations in vitro in hematopoietic ES cell assays and in vivo following transplantation. The relationship between PGE2 and Wnt was also conserved during regeneration of other organ systems. Our work provides in vivo evidence that Wnt activation in stem cells requires PGE2, and suggests the PGE2/Wnt interaction is a master regulator of vertebrate regeneration and recovery.


Asunto(s)
Dinoprostona/metabolismo , Desarrollo Embrionario , Células Madre Hematopoyéticas/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Células Madre Embrionarias/metabolismo , Hígado/fisiología , Ratones , Regeneración , Transducción de Señal , Pez Cebra/embriología , beta Catenina/metabolismo
3.
Cell ; 136(6): 1017-31, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303846

RESUMEN

The Disrupted in Schizophrenia 1 (DISC1) gene is disrupted by a balanced chromosomal translocation (1; 11) (q42; q14.3) in a Scottish family with a high incidence of major depression, schizophrenia, and bipolar disorder. Subsequent studies provided indications that DISC1 plays a role in brain development. Here, we demonstrate that suppression of DISC1 expression reduces neural progenitor proliferation, leading to premature cell cycle exit and differentiation. Several lines of evidence suggest that DISC1 mediates this function by regulating GSK3beta. First, DISC1 inhibits GSK3beta activity through direct physical interaction, which reduces beta-catenin phosphorylation and stabilizes beta-catenin. Importantly, expression of stabilized beta-catenin overrides the impairment of progenitor proliferation caused by DISC1 loss of function. Furthermore, GSK3 inhibitors normalize progenitor proliferation and behavioral defects caused by DISC1 loss of function. Together, these results implicate DISC1 in GSK3beta/beta-catenin signaling pathways and provide a framework for understanding how alterations in this pathway may contribute to the etiology of psychiatric disorders.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Transducción de Señal , beta Catenina/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Encéfalo/citología , Encéfalo/embriología , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Células Madre/citología , Células Madre/metabolismo
4.
Nat Rev Mol Cell Biol ; 10(7): 468-77, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19536106

RESUMEN

The Wnt family of secreted ligands act through many receptors to stimulate distinct intracellular signalling pathways in embryonic development, in adults and in disease processes. Binding of Wnt to the Frizzled family of receptors and to low density lipoprotein receptor-related protein 5 (LRP5) or LRP6 co-receptors stimulates the intracellular Wnt-beta-catenin signalling pathway, which regulates beta-cateninstability and context-dependent transcription. This signalling pathway controls many processes, such as cell fate determination, cell proliferation and self-renewal of stem and progenitor cells. Intriguingly, the transmembrane receptor Tyr kinases Ror2 and Ryk, as well as Frizzledreceptors that act independently of LRP5 or LRP6, function as receptors for Wnt and activate beta-catenin-independent pathways. This leads to changes in cell movement and polarity and to the antagonism of the beta-catenin pathway.


Asunto(s)
Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Cilios/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos
5.
Proc Natl Acad Sci U S A ; 114(5): E717-E726, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096348

RESUMEN

Regeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins, and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including development, bioelectric signaling, and amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration.


Asunto(s)
Aletas de Animales/fisiología , Pez Cebra , Animales , Femenino , Masculino , Metabolómica , Proteómica , Regeneración/fisiología , Transcriptoma , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología
6.
Proc Natl Acad Sci U S A ; 114(38): 10125-10130, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28864533

RESUMEN

The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.


Asunto(s)
Simulación por Computador , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Histonas/química , Células Madre Embrionarias Humanas/citología , Humanos , Metilación , Complejo Represivo Polycomb 2/química
7.
Proc Natl Acad Sci U S A ; 113(4): 1002-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755607

RESUMEN

To reveal the molecular mechanisms involved in cardiac lineage determination and differentiation, we quantified the proteome of human embryonic stem cells (hESCs), cardiac progenitor cells (CPCs), and cardiomyocytes during a time course of directed differentiation by label-free quantitative proteomics. This approach correctly identified known stage-specific markers of cardiomyocyte differentiation, including SRY-box2 (SOX2), GATA binding protein 4 (GATA4), and myosin heavy chain 6 (MYH6). This led us to determine whether our proteomic screen could reveal previously unidentified mediators of heart development. We identified Disabled 2 (DAB2) as one of the most dynamically expressed proteins in hESCs, CPCs, and cardiomyocytes. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis in zebrafish to assess whether DAB2 plays a functional role during cardiomyocyte differentiation. We found that deletion of Dab2 in zebrafish embryos led to a significant reduction in cardiomyocyte number and increased endogenous WNT/ß-catenin signaling. Furthermore, the Dab2-deficient defects in cardiomyocyte number could be suppressed by overexpression of dickkopf 1 (DKK1), an inhibitor of WNT/ß-catenin signaling. Thus, inhibition of WNT/ß-catenin signaling by DAB2 is essential for establishing the correct number of cardiomyocytes in the developing heart. Our work demonstrates that quantifying the proteome of human stem cells can identify previously unknown developmental regulators.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Corazón/embriología , Proteómica , Proteínas Supresoras de Tumor/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Miocitos Cardíacos/citología , Pez Cebra/embriología
8.
Proc Natl Acad Sci U S A ; 113(42): E6382-E6390, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698112

RESUMEN

In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/ß-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/ß-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of ß-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/ß-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/ß-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Vía de Señalización Wnt , Apoptosis , Benzotiazoles/farmacología , Biomarcadores , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Compuestos Heterocíclicos con 3 Anillos/farmacología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Modelos Biológicos , Proteómica/métodos , ARN Interferente Pequeño/genética , Vía de Señalización Wnt/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 113(21): E2945-54, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162353

RESUMEN

The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/ß-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Receptores Frizzled/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Vía de Señalización Wnt , Animales , Proteínas de Unión al ADN/genética , Receptores Frizzled/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Neoplasias Experimentales/genética , Proteínas Oncogénicas/genética , Proteínas Proto-Oncogénicas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Development ; 142(18): 3198-209, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26153229

RESUMEN

During vertebrate development, mesodermal fate choices are regulated by interactions between morphogens such as activin/nodal, BMPs and Wnt/ß-catenin that define anterior-posterior patterning and specify downstream derivatives including cardiomyocyte, endothelial and hematopoietic cells. We used human embryonic stem cells to explore how these pathways control mesodermal fate choices in vitro. Varying doses of activin A and BMP4 to mimic cytokine gradient polarization in the anterior-posterior axis of the embryo led to differential activity of Wnt/ß-catenin signaling and specified distinct anterior-like (high activin/low BMP) and posterior-like (low activin/high BMP) mesodermal populations. Cardiogenic mesoderm was generated under conditions specifying anterior-like mesoderm, whereas blood-forming endothelium was generated from posterior-like mesoderm, and vessel-forming CD31(+) endothelial cells were generated from all mesoderm origins. Surprisingly, inhibition of ß-catenin signaling led to the highly efficient respecification of anterior-like endothelium into beating cardiomyocytes. Cardiac respecification was not observed in posterior-derived endothelial cells. Thus, activin/BMP gradients specify distinct mesodermal subpopulations that generate cell derivatives with unique angiogenic, hemogenic and cardiogenic properties that should be useful for understanding embryogenesis and developing therapeutics.


Asunto(s)
Transdiferenciación Celular/fisiología , Endotelio/fisiología , Mesodermo/fisiología , Miocitos Cardíacos/fisiología , Transducción de Señal/fisiología , beta Catenina/antagonistas & inhibidores , Activinas/farmacología , Análisis de Varianza , Secuencia de Bases , Proteína Morfogenética Ósea 4/farmacología , Técnicas de Cultivo de Célula , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Endotelio/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Mesodermo/citología , Datos de Secuencia Molecular , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos
11.
Development ; 141(13): 2581-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24961798

RESUMEN

Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC(+), mpo(+)) and macrophages (mpeg1(+)) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/ß-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish.


Asunto(s)
Movimiento Celular/fisiología , Inflamación/fisiopatología , Macrófagos/fisiología , Morfogénesis/fisiología , Regeneración/fisiología , Cola (estructura animal)/fisiología , Pez Cebra/fisiología , Amputación Quirúrgica , Animales , Animales Modificados Genéticamente , Cartilla de ADN/genética , Citometría de Flujo , Inmunohistoquímica , Microscopía Fluorescente , Neutrófilos/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Cola (estructura animal)/cirugía
12.
Blood ; 126(15): 1785-9, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26333776

RESUMEN

Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/ß-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that ß-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/ß-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia.


Asunto(s)
Aberraciones Cromosómicas , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Proteínas de Fusión Oncogénica/genética , Translocación Genética/genética , Proteínas Wnt/genética , beta Catenina/genética , Células Cultivadas , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 8/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Técnica del Anticuerpo Fluorescente , Células Madre Hematopoyéticas/citología , Humanos , Hibridación Fluorescente in Situ , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , Proteína 1 Compañera de Translocación de RUNX1 , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética
14.
Biochem Biophys Res Commun ; 477(4): 952-956, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387232

RESUMEN

Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/ß-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/ß-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/ß-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/ß-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/ß-catenin signaling in adult and larval zebrafish spinal cord regeneration.


Asunto(s)
Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/fisiología , Médula Espinal/fisiopatología , Vía de Señalización Wnt , Pez Cebra/fisiología , beta Catenina/metabolismo , Animales , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Regulación hacia Arriba , Pez Cebra/anatomía & histología
15.
Development ; 140(18): 3799-808, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23924634

RESUMEN

Genetic regulation of the cell fate transition from lateral plate mesoderm to the specification of cardiomyocytes requires suppression of Wnt/ß-catenin signaling, but the mechanism for this is not well understood. By analyzing gene expression and chromatin dynamics during directed differentiation of human embryonic stem cells (hESCs), we identified a suppressor of Wnt/ß-catenin signaling, transmembrane protein 88 (TMEM88), as a potential regulator of cardiovascular progenitor cell (CVP) specification. During the transition from mesoderm to the CVP, TMEM88 has a chromatin signature of genes that mediate cell fate decisions, and its expression is highly upregulated in advance of key cardiac transcription factors in vitro and in vivo. In early zebrafish embryos, tmem88a is expressed broadly in the lateral plate mesoderm, including the bilateral heart fields. Short hairpin RNA targeting of TMEM88 during hESC cardiac differentiation increases Wnt/ß-catenin signaling, confirming its role as a suppressor of this pathway. TMEM88 knockdown has no effect on NKX2.5 or GATA4 expression, but 80% of genes most highly induced during CVP development have reduced expression, suggesting adoption of a new cell fate. In support of this, analysis of later stage cell differentiation showed that TMEM88 knockdown inhibits cardiomyocyte differentiation and promotes endothelial differentiation. Taken together, TMEM88 is crucial for heart development and acts downstream of GATA factors in the pre-cardiac mesoderm to specify lineage commitment of cardiomyocyte development through inhibition of Wnt/ß-catenin signaling.


Asunto(s)
Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Linaje de la Célula/genética , Regulación hacia Abajo/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/genética , Ratones , Modelos Biológicos , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Regulación hacia Arriba/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , beta Catenina/metabolismo
16.
J Virol ; 90(5): 2240-53, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26656717

RESUMEN

UNLABELLED: The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE: As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Vía de Señalización Wnt/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Inflamación/patología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/patología , Pulmón/virología , Ratones Endogámicos BALB C , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/enzimología , Virus Reordenados/patogenicidad , Proteínas Virales/genética , Virulencia , Factores de Virulencia/genética
17.
Proc Natl Acad Sci U S A ; 110(4): 1440-5, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23302695

RESUMEN

Fibrosis of vital organs is a major public health problem with limited therapeutic options. Mesenchymal cells including microvascular mural cells (pericytes) are major progenitors of scar-forming myofibroblasts in kidney and other organs. Here we show pericytes in healthy kidneys have active WNT/ß-catenin signaling responses that are markedly up-regulated following kidney injury. Dickkopf-related protein 1 (DKK-1), a ligand for the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP-5 and LRP-6) and an inhibitor of WNT/ß-catenin signaling, effectively inhibits pericyte activation, detachment, and transition to myofibroblasts in vivo in response to kidney injury, resulting in attenuated fibrogenesis, capillary rarefaction, and inflammation. DKK-1 blocks activation and proliferation of established myofibroblasts in vitro and blocks pericyte proliferation to PDGF, pericyte migration, gene activation, and cytoskeletal reorganization to TGF-ß or connective tissue growth factor. These effects are largely independent of inhibition of downstream ß-catenin signaling. DKK-1 acts predominantly by inhibiting PDGF-, TGF-ß-, and connective tissue growth factor-activated MAPK and JNK signaling cascades, acting via LRP-6 with associated WNT ligand. Biochemically, LRP-6 interacts closely with PDGF receptor ß and TGF-ß receptor 1 at the cell membrane, suggesting that it may have roles in pathways other than WNT/ß-catenin. In summary, DKK-1 blocks many of the changes in pericytes required for myofibroblast transition and attenuates established myofibroblast proliferation/activation by mechanisms dependent on LRP-6 and WNT ligands but not the downstream ß-catenin pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Pericitos/metabolismo , Pericitos/patología , Animales , Becaplermina , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/farmacología , Fibrosis , Puntos de Control de la Fase G1 del Ciclo Celular , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pericitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
18.
Nat Genet ; 39(1): 106-12, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17128274

RESUMEN

Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.


Asunto(s)
Papilas Gustativas/embriología , Proteínas Wnt/fisiología , beta Catenina/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Transgénicos , Morfogénesis/genética , Embarazo , Transducción de Señal/genética , Papilas Gustativas/crecimiento & desarrollo , beta Catenina/genética
19.
Hum Mol Genet ; 22(23): 4661-72, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23821646

RESUMEN

Facioscapulohumeral muscular dystrophy is a dominantly inherited myopathy associated with chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4. DUX4 is encoded within each unit of the D4Z4 array where it is normally transcriptionally silenced and packaged as constitutive heterochromatin. Truncation of the array to less than 11 D4Z4 units (FSHD1) or mutations in SMCHD1 (FSHD2) results in chromatin relaxation and a small percentage of cultured myoblasts from these individuals exhibit infrequent bursts of DUX4 expression. There are no cellular or animal models to determine the trigger of the DUX4 producing transcriptional bursts and there has been a failure to date to detect the protein in significant numbers of cells from FSHD-affected individuals. Here, we demonstrate for the first time that myotubes generated from FSHD patients express sufficient amounts of DUX4 to undergo DUX4-dependent apoptosis. We show that activation of the Wnt/ß-catenin signaling pathway suppresses DUX4 transcription in FSHD1 and FSHD2 myotubes and can rescue DUX4-mediated myotube apoptosis. In addition, reduction of mRNA transcripts from Wnt pathway genes ß-catenin, Wnt3A and Wnt9B results in DUX4 activation. We propose that Wnt/ß-catenin signaling is important for transcriptional repression of DUX4 and identify a novel group of therapeutic targets for the treatment of FSHD.


Asunto(s)
Apoptosis , Proteínas de Homeodominio/metabolismo , Fibras Musculares Esqueléticas/fisiología , Distrofia Muscular Facioescapulohumeral/genética , Vía de Señalización Wnt , Animales , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Ratones , ARN Interferente Pequeño/genética
20.
Hum Mol Genet ; 22(16): 3259-68, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595882

RESUMEN

We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2-X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations.


Asunto(s)
Cromosomas Humanos X , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Variación Genética , Espasticidad Muscular/genética , Trastornos Parkinsonianos/genética , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/genética , Anciano , Sitios de Unión/genética , Células Cultivadas , Codón sin Sentido , Exoma , Femenino , Mutación del Sistema de Lectura , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Ligamiento Genético , Células HEK293 , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Espasticidad Muscular/metabolismo , Mutación Missense , Trastornos Parkinsonianos/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA