Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 144(Pt A): 128-141, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664827

RESUMEN

Machine learning approaches have been widely used for the identification of neuropathology from neuroimaging data. However, these approaches require large samples and suffer from the challenges associated with multi-site, multi-protocol data. We propose a novel approach to address these challenges, and demonstrate its usefulness with the Autism Brain Imaging Data Exchange (ABIDE) database. We predict symptom severity based on cortical thickness measurements from 156 individuals with autism spectrum disorder (ASD) from four different sites. The proposed approach consists of two main stages: a domain adaptation stage using partial least squares regression to maximize the consistency of imaging data across sites; and a learning stage combining support vector regression for regional prediction of severity with elastic-net penalized linear regression for integrating regional predictions into a whole-brain severity prediction. The proposed method performed markedly better than simpler alternatives, better with multi-site than single-site data, and resulted in a considerably higher cross-validated correlation score than has previously been reported in the literature for multi-site data. This demonstration of the utility of the proposed approach for detecting structural brain abnormalities in ASD from the multi-site, multi-protocol ABIDE dataset indicates the potential of designing machine learning methods to meet the challenges of agglomerative data.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Corteza Cerebral/diagnóstico por imagen , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Niño , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
2.
Neuroimage ; 104: 398-412, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25312773

RESUMEN

Mild cognitive impairment (MCI) is a transitional stage between age-related cognitive decline and Alzheimer's disease (AD). For the effective treatment of AD, it would be important to identify MCI patients at high risk for conversion to AD. In this study, we present a novel magnetic resonance imaging (MRI)-based method for predicting the MCI-to-AD conversion from one to three years before the clinical diagnosis. First, we developed a novel MRI biomarker of MCI-to-AD conversion using semi-supervised learning and then integrated it with age and cognitive measures about the subjects using a supervised learning algorithm resulting in what we call the aggregate biomarker. The novel characteristics of the methods for learning the biomarkers are as follows: 1) We used a semi-supervised learning method (low density separation) for the construction of MRI biomarker as opposed to more typical supervised methods; 2) We performed a feature selection on MRI data from AD subjects and normal controls without using data from MCI subjects via regularized logistic regression; 3) We removed the aging effects from the MRI data before the classifier training to prevent possible confounding between AD and age related atrophies; and 4) We constructed the aggregate biomarker by first learning a separate MRI biomarker and then combining it with age and cognitive measures about the MCI subjects at the baseline by applying a random forest classifier. We experimentally demonstrated the added value of these novel characteristics in predicting the MCI-to-AD conversion on data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. With the ADNI data, the MRI biomarker achieved a 10-fold cross-validated area under the receiver operating characteristic curve (AUC) of 0.7661 in discriminating progressive MCI patients (pMCI) from stable MCI patients (sMCI). Our aggregate biomarker based on MRI data together with baseline cognitive measurements and age achieved a 10-fold cross-validated AUC score of 0.9020 in discriminating pMCI from sMCI. The results presented in this study demonstrate the potential of the suggested approach for early AD diagnosis and an important role of MRI in the MCI-to-AD conversion prediction. However, it is evident based on our results that combining MRI data with cognitive test results improved the accuracy of the MCI-to-AD conversion prediction.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Disfunción Cognitiva/patología , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
3.
Neuroimage ; 111: 562-79, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25652394

RESUMEN

Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n=30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.


Asunto(s)
Algoritmos , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Diagnóstico por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/clasificación , Disfunción Cognitiva/clasificación , Diagnóstico por Computador/normas , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
4.
Alzheimers Res Ther ; 16(1): 46, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414035

RESUMEN

BACKGROUND: The pathophysiology of Alzheimer's disease (AD) involves ß -amyloid (A ß ) accumulation. Early identification of individuals with abnormal ß -amyloid levels is crucial, but A ß quantification with positron emission tomography (PET) and cerebrospinal fluid (CSF) is invasive and expensive. METHODS: We propose a machine learning framework using standard non-invasive (MRI, demographics, APOE, neuropsychology) measures to predict future A ß -positivity in A ß -negative individuals. We separately study A ß -positivity defined by PET and CSF. RESULTS: Cross-validated AUC for 4-year A ß conversion prediction was 0.78 for the CSF-based and 0.68 for the PET-based A ß definitions. Although not trained for the clinical status-change prediction, the CSF-based model excelled in predicting future mild cognitive impairment (MCI)/dementia conversion in cognitively normal/MCI individuals (AUCs, respectively, 0.76 and 0.89 with a separate dataset). CONCLUSION: Standard measures have potential in detecting future A ß -positivity and assessing conversion risk, even in cognitively normal individuals. The CSF-based definition led to better predictions than the PET-based definition.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Tomografía de Emisión de Positrones , Aprendizaje Automático , Proteínas tau/líquido cefalorraquídeo
5.
Endocr Relat Cancer ; 30(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140987

RESUMEN

Prostate cancer (PCa) is the second-most common cause of male cancer-related death in western industrialized countries, and the emergence of metastases is a key challenge in the treatment of PCa. Accumulating studies have shown that long noncoding RNAs (lncRNAs) play an important role in the regulation of diverse cellular and molecular processes during the development and progression of cancer. Here, we utilized a unique cohort of castration-resistant prostate cancer metastases (mCRPC) and corresponding localized tumors and RNA sequencing (RNA-seq). First, we showed that patient-to-patient variability accounted for most of the variance in lncRNA expression between the samples, suggesting that genomic alterations in the samples are the main drivers of lncRNA expression in PCa metastasis. Subsequently, we identified 27 lncRNAs with differential expression (DE-lncRNAs) between metastases and corresponding primary tumors, suggesting that they are mCRPC-specific lncRNAs. Analyses of potential regulation by transcription factors (TFs) revealed that approximately half of the DE-lncRNAs have at least one binding site for the androgen receptor in their regulatory regions. In addition, TF enrichment analysis revealed the enrichment of binding sites for PCa-associated TFs, such as FOXA1 and HOXB13, in the regulatory regions of the DE-lncRNAs. In a cohort of prostatectomy-treated prostate tumors, four of the DE-lncRNAs showed association with progression-free time and two of them (lnc-SCFD2-2 and lnc-R3HCC1L-8) were independent prognostic markers. Our study highlights several mCRPC-specific lncRNAs that might be important in the progression of the disease to the metastatic stage and may also serve as potential biomarkers for aggressive PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , ARN Largo no Codificante , Humanos , Masculino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Próstata/metabolismo , Regulación Neoplásica de la Expresión Génica
6.
Nat Commun ; 14(1): 7630, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993433

RESUMEN

Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Infecciones por Enterovirus , Islotes Pancreáticos , Humanos , Niño , Autoanticuerpos , Transcriptoma , Autoinmunidad/genética , Insulina/metabolismo , Infecciones por Enterovirus/genética , Islotes Pancreáticos/metabolismo
7.
Neurobiol Aging ; 84: 98-108, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31522136

RESUMEN

Early identification and treatment of Alzheimer's disease (AD) is hampered by the lack of easily accessible biomarkers. Currently available fluid biomarkers of AD provide indications of the disease stage; however, these are measured in the cerebrospinal fluid, requiring invasive procedures, which are not applicable at the population level. Thus, gene expression profiling of blood provides a viable alternative as a way to screen individuals at risk of AD. Previous studies have shown that despite the limited permeability of the blood-brain barriers, expression profiles of blood genes can be used for the diagnosis and prognosis of several brain disorders. Here, we propose a new approach to pathway analysis of blood gene expression profiles to classify healthy (control [CTL]), mildly cognitively impaired (mild cognitive impairment [MCI]; preclinical stage of AD), and AD subjects. In the pathway analysis, gene expression data are mapped to pathway scores according to a predefined gene set instead of considering each gene separately. The robustness of the analysis enables detection of weak differences between groups owing to the inherent dimension reduction. Our proposed method for pathway analysis takes advantage of linear discriminant analysis for identifying a linear combination of features best separating groups of subjects within each gene set. The gene expression data were retrieved from Gene Expression Omnibus (batch 1: GSE63060; batch 2: GSE63061). Predefined gene sets for pathway analysis were obtained from the Broad Institute Collection of Curated Pathways. The method achieved a 10-fold cross-validated area under receiver operating characteristic curve of 0.84 for classification of AD versus CTL and 0.80 for classification of mild cognitive impairment versus CTL. These results reveal the good potential of blood-based biomarkers for assisting early diagnosis and disease monitoring of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Expresión Génica , Biomarcadores/sangre , Humanos
8.
Neuroimage Clin ; 13: 415-427, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28116234

RESUMEN

Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Disfunción Cognitiva , Progresión de la Enfermedad , Imagen por Resonancia Magnética/métodos , Memoria Episódica , Pruebas Neuropsicológicas/estadística & datos numéricos , Aprendizaje Verbal/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Pronóstico
9.
Blood Adv ; 1(24): 2257-2268, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29296874

RESUMEN

Mantle cell lymphoma (MCL) is an aggressive form of non-Hodgkin B-cell lymphoma with poor prognosis due to drug resistance. Introduction of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib has markedly improved MCL therapy outcome, but drug resistance remains a challenge. The selective cell-surface expression of oncogenic receptor tyrosine kinase-like orphan receptor 1 (ROR1) pseudokinase in hematological malignancies has made this receptor a promising candidate for targeted therapy. We sought to identify the molecular mechanism underlying divergent ROR1-mediated apoptotic responses in MCL cell lines and primary samples. We show that targeting ROR1 expression resulted in downregulation of NF-κB p65 levels and that activation of the NF-κB pathway can antagonize ROR1-mediated apoptotic responses. High-throughput drug-sensitivity testing of MCL cells before and after ROR1 targeting revealed synergistic effects between cotargeting of ROR1 and the B-cell antigen receptor (BCR) or Bcl-2 family, underlining the high potential for ROR1-targeted therapies in overcoming MCL drug resistance. However, inhibition of the BCR pathway by targeted drugs such as ibrutinib can impair ROR1 expression and consequently ROR1-targeted treatments, underscoring the importance of inhibiting both pathways to augment cancer cell killing. Considering the central role of NF-κB pathway activation in B-cell malignancies, this study highlights key factors that can modulate ROR1-targeted treatments in hematological cancers.

10.
Neuroinformatics ; 14(3): 279-96, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26803769

RESUMEN

We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Demencia/diagnóstico por imagen , Demencia/patología , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/clasificación , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/clasificación , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Bases de Datos Factuales , Demencia/clasificación , Humanos , Reconocimiento de Normas Patrones Automatizadas , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA