Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 23(1): 23-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389828

RESUMEN

Animal hosts have initiated myriad symbiotic associations with microorganisms and often have maintained these symbioses for millions of years, spanning drastic changes in ecological conditions and lifestyles. The establishment and persistence of these relationships require genetic innovations on the parts of both symbionts and hosts. The nature of symbiont innovations depends on their genetic population structure, categorized here as open, closed or mixed. These categories reflect modes of inter-host transmission that result in distinct genomic features, or genomic syndromes, in symbionts. Although less studied, hosts also innovate in order to preserve and control symbiotic partnerships. New capabilities to sequence host-associated microbial communities and to experimentally manipulate both hosts and symbionts are providing unprecedented insights into how genetic innovations arise under different symbiont population structures and how these innovations function to support symbiotic relationships.


Asunto(s)
Aliivibrio/genética , Artrópodos/genética , Decapodiformes/genética , Interacciones Microbiota-Huesped/genética , Simbiosis/genética , Wolbachia/genética , Aliivibrio/fisiología , Animales , Artrópodos/microbiología , Decapodiformes/microbiología , Flujo Génico , Flujo Genético , Modelos Genéticos , Filogenia , Selección Genética , Wolbachia/clasificación , Wolbachia/fisiología
2.
PLoS Biol ; 22(4): e3002595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635919

RESUMEN

How do distinct species cofunction in symbiosis, despite conflicting interests? A new collection of articles explores emerging themes as researchers exploit modern research tools and new models to unravel how symbiotic interactions function and evolve.


Asunto(s)
Coanoflagelados , Simbiosis
3.
Proc Natl Acad Sci U S A ; 120(25): e2220922120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307477

RESUMEN

Honey bees (Apis mellifera) are critical agricultural pollinators as well as model organisms for research on development, behavior, memory, and learning. The parasite Nosema ceranae, a common cause of honey bee colony collapse, has developed resistance to small-molecule therapeutics. An alternative long-term strategy to combat Nosema infection is therefore urgently needed, with synthetic biology offering a potential solution. Honey bees harbor specialized bacterial gut symbionts that are transmitted within hives. Previously, these have been engineered to inhibit ectoparasitic mites by expressing double-stranded RNA (dsRNA) targeting essential mite genes, via activation of the mite RNA interference (RNAi) pathway. In this study, we engineered a honey bee gut symbiont to express dsRNA targeting essential genes of N. ceranae via the parasite's own RNAi machinery. The engineered symbiont sharply reduced Nosema proliferation and improved bee survival following the parasite challenge. This protection was observed in both newly emerged and older forager bees. Furthermore, engineered symbionts were transmitted among cohoused bees, suggesting that introducing engineered symbionts to hives could result in colony-level protection.


Asunto(s)
Miel , Parásitos , Urticaria , Abejas , Animales , Agricultura , Genes Esenciales , ARN Bicatenario
4.
Proc Natl Acad Sci U S A ; 119(18): e2115013119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35467987

RESUMEN

Host-associated microbiomes, particularly gut microbiomes, often harbor related but distinct microbial lineages, but how this diversity arises and is maintained is not well understood. A prerequisite for lineage diversification is reproductive isolation imposed by barriers to gene flow. In host-associated microbes, genetic recombination can be disrupted by confinement to different hosts, for example following host speciation, or by niche partitioning within the same host. Taking advantage of the simple gut microbiome of social bees, we explore the diversification of two groups of gut-associated bacteria, Gilliamella and Snodgrassella, which have evolved for 80 million y with honey bees and bumble bees. Our analyses of sequenced genomes show that these lineages have diversified into discrete populations with limited gene flow. Divergence has occurred between symbionts of different host species and, in some cases, between symbiont lineages within a single host individual. Populations have acquired genes to adapt to specific hosts and ecological niches; for example, Gilliamella lineages differ markedly in abilities to degrade dietary polysaccharides and to use the resulting sugar components. Using engineered fluorescent bacteria in vivo, we show that Gilliamella lineages localize to different hindgut regions, corresponding to differences in their abilities to use spatially concentrated nitrogenous wastes of hosts. Our findings show that bee gut bacteria can diversify due to isolation in different host species and also due to spatial niche partitioning within individual hosts, leading to barriers to gene flow.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Adaptación Fisiológica , Animales , Bacterias/genética , Abejas , Especificidad del Huésped
5.
PLoS Genet ; 18(5): e1010195, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35522718

RESUMEN

Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.


Asunto(s)
Áfidos , Buchnera , Animales , Áfidos/genética , Áfidos/microbiología , Buchnera/genética , Buchnera/metabolismo , Genes Bacterianos , Genómica , Peptidoglicano/genética , Peptidoglicano/metabolismo , Filogenia , Simbiosis/genética
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042801

RESUMEN

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Asunto(s)
Secuencia de Bases/genética , Eucariontes/genética , Genómica/ética , Animales , Biodiversidad , Evolución Biológica , Ecología , Ecosistema , Genoma , Genómica/métodos , Humanos , Filogenia
7.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069672

RESUMEN

Genomes of aphids (family Aphididae) show several unusual evolutionary patterns. In particular, within the XO sex determination system of aphids, the X chromosome exhibits a lower rate of interchromosomal rearrangements, fewer highly expressed genes, and faster evolution at nonsynonymous sites compared with the autosomes. In contrast, other hemipteran lineages have similar rates of interchromosomal rearrangement for autosomes and X chromosomes. One possible explanation for these differences is the aphid's life cycle of cyclical parthenogenesis, where multiple asexual generations alternate with 1 sexual generation. If true, we should see similar features in the genomes of Phylloxeridae, an outgroup of aphids which also undergoes cyclical parthenogenesis. To investigate this, we generated a chromosome-level assembly for the grape phylloxera, an agriculturally important species of Phylloxeridae, and identified its single X chromosome. We then performed synteny analysis using the phylloxerid genome and 30 high-quality genomes of aphids and other hemipteran species. Unexpectedly, we found that the phylloxera does not share aphids' patterns of chromosome evolution. By estimating interchromosomal rearrangement rates on an absolute time scale, we found that rates are elevated for aphid autosomes compared with their X chromosomes, but this pattern does not extend to the phylloxera branch. Potentially, the conservation of X chromosome gene content is due to selection on XO males that appear in the sexual generation. We also examined gene duplication patterns across Hemiptera and uncovered horizontal gene transfer events contributing to phylloxera evolution.


Asunto(s)
Áfidos , Animales , Masculino , Áfidos/genética , Cromosoma X/genética , Partenogénesis/genética , Reproducción , Evolución Molecular
8.
Appl Environ Microbiol ; 90(8): e0051524, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39012136

RESUMEN

Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE: Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.


Asunto(s)
Bacterias , Biopelículas , Microbioma Gastrointestinal , Glicina , Glifosato , Herbicidas , Simbiosis , Animales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Abejas/microbiología , Glicina/análogos & derivados , Glicina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Herbicidas/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-39331838

RESUMEN

Non-culture based surveys show that the bacterial family Orbaceae is widespread in guts of insects, including wild Drosophila. Relatively few isolates have been described, and none has been described from Drosophila. We present the isolation and characterization of five strains of Orbaceae from wild-caught flies of the genera Drosophila (Diptera: Drosophilidae) and Neogriphoneura (Diptera: Lauxaniidae). Cells are generally rod-shaped, mesophilic, and measure 0.8-2.0 µm long by 0.3-0.5 µm wide. Optimal growth was observed under ambient atmosphere. Reconstruction of phylogenies from the 16S rRNA gene and from single-copy orthologs verify placement of these strains within Orbaceae. Cells exhibited similar fatty acid profiles to those of other Orbaceae. Strain lpD01T shared 74% average nucleotide identity (ANI) with its closest relatives Ca. Schmidhempelia bombi Bimp and Zophobihabitans entericus IPMB12T. Results from multiple genome-wide similarity comparisons indicate lpD01T should be classified as a novel species within a novel genus. The major respiratory quinone for lpD01T is ubiquinone Q-8. lpD02T, lpD03, lpD04T, and BiBT are more closely related to Orbus hercynius CN3T (76, 77, 76, and 77% ANI, respectively) than to other described Orbaceae. Genomic and phylogenetic analyses suggest that lpD03 and lpD04T belong to the same species and that lpD02T, lpD03/lpD04T, and BiBT are each novel species of the genus Orbus. The proposed names of these strains are Utexia brackfieldae gen. nov., sp. nov. (type strain lpD01T =NCIMB 15517T =ATCC TSD-399T), Orbus sturtevantii sp. nov (type strain lpD02T =NCIMB 15518T =ATCC TSD-400T), Orbus wheelerorum sp. nov. (type strain lpD04T =NCIMB 15520T =ATCC TSD-401T), and Orbus mooreae sp. nov (type strain BiBT=NCIMB 15516T =ATCC TSD-402T). The isolation and characterization of these strains expands the repertoire of culturable bacteria naturally associated with insects, including the model organism D. melanogaster.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Dípteros , Drosophila , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Simbiosis , Animales , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Dípteros/microbiología , Drosophila/microbiología , Composición de Base , Microbioma Gastrointestinal
10.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34429360

RESUMEN

Numerous animal lineages have maternally inherited symbionts that are required for host reproduction and growth. Endosymbionts also pose a risk to their hosts because of the mutational decay of their genomes through genetic drift or to selfish mutations that favor symbiont fitness over host fitness. One model for heritable endosymbiosis is the association of aphids with their obligate bacterial symbiont, Buchnera We experimentally established heteroplasmic pea aphid matrilines containing pairs of closely related Buchnera haplotypes and used deep sequencing of diagnostic markers to measure haplotype frequencies in successive host generations. These frequencies were used to estimate the effective population size of Buchnera within hosts (i.e., the transmission bottleneck size) and the extent of within-host selection. The within-host effective population size was in the range of 10 to 20, indicating a strong potential for genetic drift and fixation of deleterious mutations. Remarkably, closely related haplotypes were subject to strong within-host selection, with selection coefficients as high as 0.5 per aphid generation. In one case, the direction of selection depended on the thermal environment and went in the same direction as between-host selection. In another, a new mutant haplotype had a strong within-host advantage under both environments but had no discernible effect on host-level fitness under laboratory conditions. Thus, within-host selection can be strong, resulting in a rapid fixation of mutations with little impact on host-level fitness. Together, these results show that within-host selection can drive evolution of an obligate symbiont, accelerating sequence evolution.


Asunto(s)
Áfidos/microbiología , Buchnera/fisiología , Flujo Genético , Haplotipos , Interacciones Microbiota-Huesped , Herencia Materna , Simbiosis , Animales , Áfidos/genética , Genoma , Filogenia , Reproducción
11.
Mol Biol Evol ; 39(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36026509

RESUMEN

Evolutionary innovations generate phenotypic and species diversity. Elucidating the genomic processes underlying such innovations is central to understanding biodiversity. In this study, we addressed the genomic basis of evolutionary novelties in the glassy-winged sharpshooter (Homalodisca vitripennis, GWSS), an agricultural pest. Prominent evolutionary innovations in leafhoppers include brochosomes, proteinaceous structures that are excreted and used to coat the body, and obligate symbiotic associations with two bacterial types that reside within cytoplasm of distinctive cell types. Using PacBio long-read sequencing and Dovetail Omni-C technology, we generated a chromosome-level genome assembly for the GWSS and then validated the assembly using flow cytometry and karyotyping. Additional transcriptomic and proteomic data were used to identify novel genes that underlie brochosome production. We found that brochosome-associated genes include novel gene families that have diversified through tandem duplications. We also identified the locations of genes involved in interactions with bacterial symbionts. Ancestors of the GWSS acquired bacterial genes through horizontal gene transfer (HGT), and these genes appear to contribute to symbiont support. Using a phylogenomics approach, we inferred HGT sources and timing. We found that some HGT events date to the common ancestor of the hemipteran suborder Auchenorrhyncha, representing some of the oldest known examples of HGT in animals. Overall, we show that evolutionary novelties in leafhoppers are generated by the combination of acquiring novel genes, produced both de novo and through tandem duplication, acquiring new symbiotic associations that enable use of novel diets and niches, and recruiting foreign genes to support symbionts and enhance herbivory.


Asunto(s)
Hemípteros , Animales , Evolución Biológica , Genómica , Hemípteros/genética , Proteómica , Simbiosis/genética
12.
Mol Ecol ; 32(3): 724-740, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36333950

RESUMEN

How a host's microbiome changes over its lifespan can influence development and ageing. As these temporal patterns have only been described in detail for a handful of hosts, an important next step is to compare microbiome succession more broadly and investigate why it varies. Here we characterize the temporal dynamics and stability of the bumble bee worker gut microbiome. Bumble bees have simple and host-specific gut microbiomes, and their microbial dynamics may influence health and pollination services. We used 16S rRNA gene sequencing, quantitative PCR and metagenomics to characterize gut microbiomes over the lifespan of Bombus impatiens workers. We also sequenced gut transcriptomes to examine host factors that may control the microbiome. At the community level, microbiome assembly is highly predictable and similar to patterns of primary succession observed in the human gut. However, at the strain level, partitioning of bacterial variants among colonies suggests stochastic colonization events similar to those observed in flies and nematodes. We also find strong differences in temporal dynamics among symbiont species, suggesting ecological differences among microbiome members in colonization and persistence. Finally, we show that both the gut microbiome and host transcriptome-including expression of key immunity genes-stabilize, as opposed to senesce, with age. We suggest that in highly social groups such as bumble bees, maintenance of both microbiomes and immunity contribute to inclusive fitness, and thus remain under selection even in old age. Our findings provide a foundation for exploring the mechanisms and functional outcomes of bee microbiome succession.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Abejas/genética , Animales , Longevidad/genética , ARN Ribosómico 16S/genética , Microbiota/genética , Microbioma Gastrointestinal/genética , Bacterias/genética
13.
Proc Natl Acad Sci U S A ; 117(4): 2113-2121, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31964845

RESUMEN

Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiont Buchnera is confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic; Buchnera titer varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing in Buchnera titer. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and that Buchnera gene expression changes in response. By comparing hosts with low and high Buchnera titer, we found that aphids and Buchnera oppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. Specific Buchnera functions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic "tug-of-war."


Asunto(s)
Áfidos/genética , Áfidos/microbiología , Buchnera/genética , Simbiosis , Aminoácidos/metabolismo , Animales , Áfidos/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Buchnera/clasificación , Buchnera/fisiología , Regulación Bacteriana de la Expresión Génica , Especificidad del Huésped
14.
Appl Environ Microbiol ; 88(13): e0020322, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35758673

RESUMEN

Eusocial corbiculate bees, including bumble bees and honey bees, maintain a socially transmitted core gut microbiome that contributes to digestion and pathogen defense. In contrast, solitary bees, which have fewer opportunities for direct interhost transmission, typically have less consistent microbiomes dominated by bacteria associated with pollen and food reserves. Carpenter bees (genus Xylocopa) are long-lived bees that are not eusocial but that often live in shared nesting sites. We characterized gut microbiomes for Xylocopa micans, X. mexicanorum, X. tabaniformis parkinsoniae, and X. virginica and for five solitary bee species from other genera (Andrena, Habropoda, Megachile, and Svastra), sampled in the same localities in central Texas. Unexpectedly, all four Xylocopa species had microbiomes dominated by bacterial lineages previously known only from social bees or other insect groups. Microbiomes were similar across three Xylocopa species and included lineages in the families Bifidobacteriaceae, Orbaceae, Lactobacillaceae, Pseudomonadaceae, and Enterobacteriaceae. In contrast, X. virginica had a distinct microbiome dominated by the genus Bombilactobacillus, a group abundant in guts of eusocial bees. Phylogenetic analyses support a past transfer of bacterial lineages into Xylocopa from bumble bees or honey bees. Gut microbiome compositions of Xylocopa species were distinct from those of other co-occurring solitary bees that had variable gut microbiomes dominated by bacteria from environmental sources. IMPORTANCE Gut microbiomes from social bees, such as honey bees and bumble bees, are conserved and consist of host-restricted bacteria that are transmitted among sterile female workers within a colony and that are important to the health of these key insect pollinators. In contrast, solitary bee species typically have more erratic, environmentally acquired microbiomes. Carpenter bees (genus Xylocopa) can be solitary as they lack a worker caste, and each female can excavate nests and raise offspring alone, although females are often social share nests at least in some species. This study showed that the gut microbiomes of four Xylocopa species have distinctive and consistent compositions and are dominated by bacterial lineages previously known from honey bees and bumble bees. Thus, eusociality is not required for bees to maintain a specialized, host-restricted gut microbiome. These findings suggest that gut bacteria are transmitted at shared nesting sites and that they play a role in host ecology.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Abejas , Femenino , Filogenia , Polen
15.
Proc Natl Acad Sci U S A ; 116(49): 24712-24718, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740601

RESUMEN

The thermal tolerance of an organism limits its ecological and geographic ranges and is potentially affected by dependence on temperature-sensitive symbiotic partners. Aphid species vary widely in heat sensitivity, but almost all aphids are dependent on the nutrient-provisioning intracellular bacterium Buchnera, which has evolved with aphids for 100 million years and which has a reduced genome potentially limiting heat tolerance. We addressed whether heat sensitivity of Buchnera underlies variation in thermal tolerance among 5 aphid species. We measured how heat exposure of juvenile aphids affects later survival, maturation time, and fecundity. At one extreme, heat exposure of Aphis gossypii enhanced fecundity and had no effect on the Buchnera titer. In contrast, heat suppressed Buchnera populations in Aphis fabae, which suffered elevated mortality, delayed development and reduced fecundity. Likewise, in Acyrthosiphon kondoi and Acyrthosiphon pisum, heat caused rapid declines in Buchnera numbers, as well as reduced survivorship, development rate, and fecundity. Fecundity following heat exposure is severely decreased by a Buchnera mutation that suppresses the transcriptional response of a gene encoding a small heat shock protein. Similarly, absence of this Buchnera heat shock gene may explain the heat sensitivity of Ap. fabae Fluorescent in situ hybridization revealed heat-induced deformation and shrinkage of bacteriocytes in heat-sensitive species but not in heat-tolerant species. Sensitive and tolerant species also differed in numbers and transcriptional responses of heat shock genes. These results show that shifts in Buchnera heat sensitivity contribute to host variation in heat tolerance.


Asunto(s)
Áfidos/fisiología , Buchnera/fisiología , Simbiosis/fisiología , Termotolerancia/fisiología , Animales , Áfidos/microbiología , Buchnera/aislamiento & purificación , Femenino , Especificidad del Huésped/fisiología , Calor/efectos adversos
16.
Proc Natl Acad Sci U S A ; 116(51): 25909-25916, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776248

RESUMEN

Bees acquire carbohydrates from nectar and lipids; and amino acids from pollen, which also contains polysaccharides including cellulose, hemicellulose, and pectin. These potential energy sources could be degraded and fermented through microbial enzymatic activity, resulting in short chain fatty acids available to hosts. However, the contributions of individual microbiota members to polysaccharide digestion have remained unclear. Through analysis of bacterial isolate genomes and a metagenome of the honey bee gut microbiota, we identify that Bifidobacterium and Gilliamella are the principal degraders of hemicellulose and pectin. Both Bifidobacterium and Gilliamella show extensive strain-level diversity in gene repertoires linked to polysaccharide digestion. Strains from honey bees possess more such genes than strains from bumble bees. In Bifidobacterium, genes encoding carbohydrate-active enzymes are colocated within loci devoted to polysaccharide utilization, as in Bacteroides from the human gut. Carbohydrate-active enzyme-encoding gene expressions are up-regulated in response to particular hemicelluloses both in vitro and in vivo. Metabolomic analyses document that bees experimentally colonized by different strains generate distinctive gut metabolomic profiles, with enrichment for specific monosaccharides, corresponding to predictions from genomic data. The other 3 core gut species clusters (Snodgrassella and 2 Lactobacillus clusters) possess few or no genes for polysaccharide digestion. Together, these findings indicate that strain composition within individual hosts determines the metabolic capabilities and potentially affects host nutrition. Furthermore, the niche specialization revealed by our study may promote overall community stability in the gut microbiomes of bees.


Asunto(s)
Abejas/microbiología , Abejas/fisiología , Digestión , Microbioma Gastrointestinal/fisiología , Plantas/química , Polisacáridos/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Regulación de la Expresión Génica , Genoma Bacteriano , Lactobacillus/genética , Metagenoma , Microbiota , Neisseriaceae/genética , Polen/química
17.
Mol Biol Evol ; 37(8): 2357-2368, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32289166

RESUMEN

Different evolutionary forces shape gene content and sequence evolution on autosomes versus sex chromosomes. Location on a sex chromosome can favor male-beneficial or female-beneficial mutations depending on the sex determination system and selective pressure on different sexual morphs. An X0 sex determination can lead to autosomal enrichment of male-biased genes, as observed in some hemipteran insect species. Aphids share X0 sex determination; however, models predict the opposite pattern, due to their unusual life cycles, which alternate between all-female asexual generations and a single sexual generation. Predictions include enrichment of female-biased genes on autosomes and of male-biased genes on the X, in contrast to expectations for obligately sexual species. Robust tests of these models require chromosome-level genome assemblies for aphids and related hemipterans with X0 sex determination and obligate sexual reproduction. In this study, we built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome-level assemblies of aphid genomes. Aphid and psyllid X chromosomes differ strikingly. In aphids, female-biased genes are strongly enriched on autosomes and male-biased genes are enriched on the X. In psyllids, male-biased genes are enriched on autosomes. Furthermore, functionally important gene categories of aphids are enriched on autosomes. Aphid X-linked genes and male-biased genes are under relaxed purifying selection, but gene content and order on the X is highly conserved, possibly reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.


Asunto(s)
Evolución Biológica , Genoma de los Insectos , Hemípteros/genética , Selección Genética , Cromosoma X , Animales , Femenino , Masculino
18.
Microbiology (Reading) ; 167(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34939561

RESUMEN

Buchnera aphidicola is an obligate endosymbiont of aphids that cannot be cultured outside of hosts. It exists as diverse strains in different aphid species, and phylogenetic reconstructions show that it has been maternally transmitted in aphids for >100 million years. B. aphidicola genomes are highly reduced and show conserved gene order and no gene acquisition, but encoded proteins undergo rapid evolution. Aphids depend on B. aphidicola for biosynthesis of essential amino acids and as an integral part of embryonic development. How B. aphidicola populations are regulated within hosts remains little known.


Asunto(s)
Áfidos , Buchnera , Animales , Buchnera/genética , Buchnera/metabolismo , Filogenia , Simbiosis/genética
19.
Proc Biol Sci ; 288(1944): 20201480, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33563119

RESUMEN

Responses to climate change are particularly complicated in species that engage in symbioses, as the niche of one partner may be modified by that of the other. We explored thermal traits in gut symbionts of honeybees and bumblebees, which are vulnerable to rising temperatures. In vitro assays of symbiont strains isolated from 16 host species revealed variation in thermal niches. Strains from bumblebees tended to be less heat-tolerant than those from honeybees, possibly due to bumblebees maintaining cooler nests or inhabiting cooler climates. Overall, however, bee symbionts grew at temperatures up to 44°C and withstood temperatures up to 52°C, at or above the upper thermal limits of their hosts. While heat-tolerant, most strains of the symbiont Snodgrassella grew relatively slowly below 35°C, perhaps because of adaptation to the elevated body temperatures that bees maintain through thermoregulation. In a gnotobiotic bumblebee experiment, Snodgrassella was unable to consistently colonize bees reared at 29°C under conditions that limit thermoregulation. Thus, host thermoregulatory behaviour appears important in creating a warm microenvironment for symbiont establishment. Bee-microbiome-temperature interactions could affect host health and pollination services, and inform research on the thermal biology of other specialized gut symbionts.


Asunto(s)
Microbiota , Neisseriaceae , Animales , Abejas , Regulación de la Temperatura Corporal , Especificidad del Huésped , Simbiosis
20.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33277267

RESUMEN

Aphids are global agricultural pests and important models for bacterial symbiosis. To date, none of the native symbionts of aphids have been genetically manipulated, which limits our understanding of how they interact with their hosts. Serratia symbiotica CWBI-2.3T is a culturable, gut-associated bacterium isolated from the black bean aphid. Closely related Serratia symbiotica strains are facultative aphid endosymbionts that are vertically transmitted from mother to offspring during embryogenesis. We demonstrate that CWBI-2.3T can be genetically engineered using a variety of techniques, plasmids, and gene expression parts. Then, we use fluorescent protein expression to track the dynamics with which CWBI-2.3T colonizes the guts of multiple aphid species, and we measure how this bacterium affects aphid fitness. Finally, we show that we can induce heterologous gene expression from engineered CWBI-2.3T in living aphids. These results inform the development of CWBI-2.3T for aphid paratransgenesis, which could be used to study aphid biology and enable future agricultural technologies.IMPORTANCE Insects have remarkably diverse and integral roles in global ecosystems. Many harbor symbiotic bacteria, but very few of these bacteria have been genetically engineered. Aphids are major agricultural pests and an important model system for the study of symbiosis. This work describes methods for engineering a culturable aphid symbiont, Serratia symbiotica CWBI-2.3T These approaches and genetic tools could be used in the future to implement new paradigms for the biological study and control of aphids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA