Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3818, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360813

RESUMEN

Avian A(H5N1) influenza virus poses an elevated zoonotic threat to humans, and no pharmacological products are currently registered for fast-acting pre-exposure protection in case of spillover leading to a pandemic. Here, we show that an epitope on the stem domain of H5 hemagglutinin is highly conserved and that the human monoclonal antibody CR9114, targeting that epitope, potently neutralizes all pseudotyped H5 viruses tested, even in the rare case of substitutions in its epitope. Further, intranasal administration of CR9114 fully protects mice against A(H5N1) infection at low dosages, irrespective of pre-existing immunity conferred by the quadrivalent seasonal influenza vaccine. These data provide a proof-of-concept for broad, pre-exposure protection against a potential future pandemic using the intranasal administration route. Studies in humans should assess if autonomous administration of a broadly-neutralizing monoclonal antibody is safe and effective and can thus contribute to pandemic preparedness.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Animales , Ratones , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Administración Intranasal , Anticuerpos Antivirales , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Ratones Endogámicos BALB C
2.
Sci Rep ; 7(1): 10794, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883481

RESUMEN

In female mammals, one X chromosome is transcriptionally inactivated (XCI), leading to dosage compensation between sexes, fundamental for embryo viability. A previous study using single-cell RNA-sequencing (scRNA-seq) data proposed that female human preimplantation embryos achieve dosage compensation by downregulating both Xs, a phenomenon named dampening of X expression. Using a novel pipeline on those data, we identified a decrease in the proportion of biallelically expressed X-linked genes during development, consistent with XCI. Moreover, we show that while the expression sum of biallelically expressed X-linked genes decreases with embryonic development, their median expression remains constant, rejecting the hypothesis of X dampening. In addition, analyses of a different dataset of scRNA-seq suggest the appearance of X-linked monoallelic expression by the late blastocyst stage in females, another hallmark of initiation of XCI. Finally, we addressed the issue of dosage compensation between the single active X and autosomes in males and females for the first time during human preimplantation development, showing emergence of X to autosome dosage compensation by the upregulation of the active X chromosome in both male and female embryonic stem cells. Our results show compelling evidence of an early process of X chromosome inactivation during human preimplantation development.


Asunto(s)
Desarrollo Embrionario/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Inactivación del Cromosoma X , Alelos , Blastocisto/metabolismo , Biología Computacional/métodos , Bases de Datos Genéticas , Embrión de Mamíferos , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Genes Ligados a X , Humanos , Masculino , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Factores Sexuales
3.
Front Cell Dev Biol ; 5: 63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680878

RESUMEN

Genetic mouse model (39,XO) for human Turner Syndrome (45,XO) harboring either a single maternally inherited (Xm) or paternally inherited (Xp) chromosome show a pronounced difference in survival rate at term. However, a detailed comparison of XmO and XpO placentas to explain this difference is lacking. We aimed to investigate the morphological and molecular differences between XmO and XpO term mouse placentas. We observed that XpO placentas at term contained a significantly larger area of glycogen cells (GCs) in their outer zone, compared to XmO, XX, and XY placentas. In addition, the outer zone of XpO placentas showed higher expression levels of lactate dehydrogenase (Ldha) than XmO, XX, and XY placentas, suggestive of increased anaerobic glycolysis. In the labyrinth, we detected significantly lower expression level of trophectoderm (TE)-marker keratin 19 (Krt19) in XpO placentas than in XX placentas. The expression of other TE-markers was comparable as well as the area of TE-derived cells between XO and wild-type labyrinths. XpO placentas exhibited specific defects in the amount of GCs and glucose metabolism in the outer zone, suggestive of increased anaerobic glycolysis, as a consequence of having inherited a single Xp chromosome. In conclusion, the XpO genotype results in a more severe placental phenotype at term, with distinct abnormalities regarding glucose metabolism in the outer zone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA