Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lab Invest ; 103(12): 100258, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813278

RESUMEN

Breast cancer is one of the most prominent types of cancers, in which therapeutic resistance is a major clinical concern. Specific subtypes, such as claudin-low and metaplastic breast carcinoma (MpBC), have been associated with high nongenetic plasticity, which can facilitate resistance. The similarities and differences between these orthogonal subtypes, identified by molecular and histopathological analyses, respectively, remain insufficiently characterized. Furthermore, adequate methods to identify high-plasticity tumors to better anticipate resistance are lacking. Here, we analyzed 11 triple-negative breast tumors, including 3 claudin-low and 4 MpBC, via high-resolution spatial transcriptomics. We combined pathological annotations and deconvolution approaches to precisely identify tumor spots, on which we performed signature enrichment, differential expression, and copy number analyses. We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia public databases for external validation of expression markers. By focusing our spatial transcriptomic analyses on tumor cells in MpBC samples, we bypassed the negative impact of stromal contamination and identified specific markers that are neither expressed in other breast cancer subtypes nor expressed in stromal cells. Three markers (BMPER, POPDC3, and SH3RF3) were validated in external expression databases encompassing bulk tumor material and stroma-free cell lines. We unveiled that existing bulk expression signatures of high-plasticity breast cancers are relevant in mesenchymal transdifferentiated compartments but can be hindered by abundant stromal cells in tumor samples, negatively impacting their clinical applicability. Spatial transcriptomic analyses constitute powerful tools to identify specific expression markers and could thus enhance diagnosis and clinical care of rare high-plasticity breast cancers.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Perfilación de la Expresión Génica , Mama/metabolismo , Transcriptoma , Claudinas/metabolismo , Pronóstico , Proteínas Portadoras/metabolismo , Proteínas Musculares/metabolismo , Moléculas de Adhesión Celular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nucleic Acids Res ; 43(12): 5838-54, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26007656

RESUMEN

DNA methylation is thought to induce transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators unable to bind their target sites when methylated, and the recruitment of transcriptional repressors with specific affinity for methylated DNA. The Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. Here, we present MBD2 ChIPseq data obtained from the endogenous MBD2 in an isogenic cellular model of oncogenic transformation of human mammary cells. In immortalized (HMEC-hTERT) or transformed (HMLER) cells, MBD2 was found in a large proportion of methylated regions and associated with transcriptional silencing. A redistribution of MBD2 on methylated DNA occurred during oncogenic transformation, frequently independently of local DNA methylation changes. Genes downregulated during HMEC-hTERT transformation preferentially gained MBD2 on their promoter. Furthermore, depletion of MBD2 induced an upregulation of MBD2-bound genes methylated at their promoter regions, in HMLER cells. Among the 3,160 genes downregulated in transformed cells, 380 genes were methylated at their promoter regions in both cell lines, specifically associated by MBD2 in HMLER cells, and upregulated upon MBD2 depletion in HMLER. The transcriptional MBD2-dependent downregulation occurring during oncogenic transformation was also observed in two additional models of mammary cell transformation. Thus, the dynamics of MBD2 deposition across methylated DNA regions was associated with the oncogenic transformation of human mammary cells.


Asunto(s)
Transformación Celular Neoplásica/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Mama/citología , Línea Celular , Línea Celular Transformada , Regulación hacia Abajo , Células Epiteliales/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Fenotipo , Telomerasa/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
3.
PLoS Genet ; 8(5): e1002723, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654675

RESUMEN

The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT-inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell-like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation.


Asunto(s)
Neoplasias de la Mama , Transformación Celular Neoplásica , Claudinas , Transición Epitelial-Mesenquimal , Glándulas Mamarias Humanas/metabolismo , Proteína Fosfatasa 2 , Proteína 1 Relacionada con Twist/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Diferenciación Celular , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Claudinas/genética , Claudinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Genes ras , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/citología , Ratones , Ratones Transgénicos , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Proteína de Retinoblastoma/metabolismo , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
4.
Mol Cancer ; 13: 213, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25216750

RESUMEN

INTRODUCTION: Tumor-initiating cells (TICs), aka "cancer stem cells", are believed to fuel tumors and to sustain therapy resistance and systemic metastasis. Breast cancer is the first human carcinoma in which a subpopulation of cells displaying a specific CD44+/CD24-/low/ESA+ antigenic phenotype was found to have TIC properties. However, CD44+/CD24-/low/ESA+ is not a universal marker phenotype of TICs in all breast cancer subtypes. The aim of this study was to identify novel antigens with which to isolate the TIC population of the basal-A/basal-like breast cancer cell lines. METHODS: We used polychromatic flow-cytometry to characterize the cell surface of several breast cancer cell lines that may represent different tumor molecular subtypes. We next used fluorescence-activated cell sorting to isolate the cell subpopulations of interest from the cell lines. Finally, we explored the stem-like and tumorigenic properties of the sorted cell subpopulations using complementary in vitro and in vivo approaches: mammosphere formation assays, soft-agar colony assays, and tumorigenic assays in NOD/SCID mice. RESULTS: The CD44+/CD24+ subpopulation of the BRCA1-mutated basal-A/basal-like cell line HCC1937 is enriched in several stemness markers, including the ABCG2 transporter (i.e., the CD338 antigen). Consistently, CD338-expressing cells were also enriched in CD24 expression, suggesting that coexpression of these two antigenic markers may segregate TICs in this cell line. In support of ABCG2 expression in TICs, culturing of HCC1937 cells in ultra-low adherent conditions to enrich them in precursor/stem-cells resulted in an increase in CD338-expressing cells. Furthermore, CD338-expressing cells, unlike their CD338-negative counterparts, displayed stemness and transformation potential, as assessed in mammosphere and colony formation assays. Lastly, CD338-expressing cells cultured in ultra-low adherent conditions maintained the expression of CD326/EpCAM and CD49f/α6-integrin, which is a combination of antigens previously assigned to luminal progenitors. CONCLUSION: Collectively, our data suggest that CD338 expression is specific to the tumor-initiating luminal progenitor subpopulation of BRCA1-mutated cells and is a novel antigen with which to sort this subpopulation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteína BRCA1/metabolismo , Neoplasias de la Mama/patología , Citometría de Flujo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Antígeno CD24/metabolismo , Adhesión Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones Endogámicos NOD , Ratones SCID , Esferoides Celulares/patología
5.
Sci Adv ; 10(7): eadi1736, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354248

RESUMEN

In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α. Our data contrast with the common view of cellular senescence as a tumor-suppressive mechanism and EMP as a process promoting late stages of tumor progression in response to signals from the tumor microenvironment. We highlighted here a pro-tumorigenic cooperation of RAS-activated mammary epithelial cells, which leverages on oncogene-induced senescence and EMP to trigger cellular reprogramming and malignant transformation.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Mama , Genes ras , Transducción de Señal , Senescencia Celular/genética , Microambiente Tumoral
6.
EMBO Rep ; 12(7): 665-72, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21597466

RESUMEN

TGF-ß is a potent inducer of epithelial-to-mesenchymal transition (EMT), a process involved in tumour invasion. TIF1γ participates in TGF-ß signalling. To understand the role of TIF1γ in TGF-ß signalling and its requirement for EMT, we analysed the TGF-ß1 response of human mammary epithelial cell lines. A strong EMT increase was observed in TIF1γ-silenced cells after TGF-ß1 treatment, whereas Smad4 inactivation completely blocked this process. Accordingly, the functions of several TIF1γ target genes can be linked to EMT, as shown by microarray analysis. As a negative regulator of Smad4, TIF1γ could be crucial for the regulation of TGF-ß signalling. Furthermore, TIF1γ binds to and represses the plasminogen activator inhibitor 1 promoter, demonstrating a direct role of TIF1γ in TGF-ß-dependent gene expression. This study shows the molecular relationship between TIF1γ and Smad4 in TGF-ß signalling and EMT.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Proteína Smad4/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Epiteliales/citología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Glándulas Mamarias Humanas/citología , Proteína Smad4/genética , Factores de Transcripción/genética , Factores de Transcripción/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
7.
Semin Cancer Biol ; 21(6): 392-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21986518

RESUMEN

The epithelial to mesenchymal transition (EMT) is a latent embryonic process which can be aberrantly reactivated during tumor progression. It is generally viewed as one of the main forces driving metastatic dissemination, by providing cells with invasive and motility capabilities. The aberrant reactivation of embryonic EMT inducers has now been additionally linked to escape from senescence and apoptosis, which suggests a role in tumor initiation. This oncogenic potential relies on the ability of EMT inducers to neutralize both the RB and p53 oncosuppressive pathways. RB and p53 have recently been described as key factors in the maintenance of epithelial morphology, which suggests an unexpected and intimate crosstalk between EMT and the corresponding safety programs. In this review, we attempt to understand how these two cell processes are interlinked and might facilitate cell transformation and tumor initiation.


Asunto(s)
Transición Epitelial-Mesenquimal , Escape del Tumor , Progresión de la Enfermedad , Humanos , Neoplasias/patología
8.
Cancer Res Commun ; 3(5): 830-841, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37377900

RESUMEN

Gynecologic carcinosarcomas (CS) are biphasic neoplasms composed of carcinomatous (C) and sarcomatous (S) malignant components. Because of their rarity and histologic complexity, genetic and functional studies on CS are scarce and the mechanisms of initiation and development remain largely unknown. Whole-genome analysis of the C and S components reveals shared genomic alterations, thus emphasizing the clonal evolution of CS. Reconstructions of the evolutionary history of each tumor further reveal that C and S samples are composed of both ancestral cell populations and component-specific subclones, supporting a common origin followed by distinct evolutionary trajectories. However, while we do not find any recurrent genomic features associated with phenotypic divergence, transcriptomic and methylome analyses identify a common mechanism across the cohort, the epithelial-to-mesenchymal transition (EMT), suggesting a role for nongenetic factors in inflicting changes to cellular fate. Altogether, these data accredit the hypothesis that CS tumors are driven by both clonal evolution and transcriptomic reprogramming, essential for susceptibility to transdifferentiation upon encountering environmental cues, thus linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences. Significance: We have provided a detailed characterization of the genomic landscape of CS and identified EMT as a common mechanism associated with phenotypic divergence, linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences.


Asunto(s)
Carcinosarcoma , Neoplasias Ováricas , Sarcoma , Humanos , Femenino , Carcinosarcoma/genética , Neoplasias Ováricas/genética
9.
Commun Biol ; 5(1): 1068, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207615

RESUMEN

TGF-ß signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-ß exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-ß1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-ß-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-ß gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteína smad3/metabolismo , Carcinogénesis/genética , Carcinoma Ductal Pancreático/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , ARN , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Pancreáticas
10.
Eur J Cancer ; 169: 106-122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35550950

RESUMEN

INTRODUCTION: Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy. METHODS: We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA (n = 1018) and a dataset from MD Anderson Cancer Center (n = 275) were analyzed. Independent validation was performed by immunohistochemistry and targeted-RNA sequencing in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas (SC, n = 55). RESULTS: We uncover that the expression of CD70, a regulatory ligand from the tumor necrosis factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 overexpression was also evidenced in mNSCLC patient tumor samples and was particularly enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-cell exhaustion markers. CONCLUSION: Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis by not only increasing cancer cell plasticity but also reprogramming the immune response in the local tumor microenvironment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ligando CD27/genética , Ligando CD27/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Ligandos , Neoplasias Pulmonares/patología , Microambiente Tumoral
11.
Cancers (Basel) ; 13(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34572787

RESUMEN

Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence and the associated immune editing would be a prerequisite for tumor initiation and progression as well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and genetic and epigenetic reprogramming. The modified composition of the SASP produced by these reprogrammed cancer cells would create a permissive environment, allowing their immune evasion. Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of senescence in normal cells and in the cancer context.

12.
Front Cell Dev Biol ; 9: 727429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458275

RESUMEN

Breast cancer cells frequently acquire mutations in faithful DNA repair genes, as exemplified by BRCA-deficiency. Moreover, overexpression of an inaccurate DNA repair pathway may also be at the origin of the genetic instability arising during the course of cancer progression. The specific gain in expression of POLQ, encoding the error-prone DNA polymerase Theta (POLθ) involved in theta-mediated end joining (TMEJ), is associated with a characteristic mutational signature. To gain insight into the mechanistic regulation of POLQ expression, this review briefly presents recent findings on the regulation of POLQ in the claudin-low breast tumor subtype, specifically expressing transcription factors involved in epithelial-to-mesenchymal transition (EMT) such as ZEB1 and displaying a paucity in genomic abnormality.

13.
Cancer Res ; 81(6): 1595-1606, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239429

RESUMEN

A characteristic of cancer development is the acquisition of genomic instability, which results from the inaccurate repair of DNA damage. Among double-strand break repair mechanisms induced by oncogenic stress, the highly mutagenic theta-mediated end-joining (TMEJ) pathway, which requires DNA polymerase theta (POLθ) encoded by the POLQ gene, has been shown to be overexpressed in several human cancers. However, little is known regarding the regulatory mechanisms of TMEJ and the consequence of its dysregulation. In this study, we combined a bioinformatics approach exploring both Molecular Taxonomy of Breast Cancer International Consortium and The Cancer Genome Atlas databases with CRISPR/Cas9-mediated depletion of the zinc finger E-box binding homeobox 1 (ZEB1) in claudin-low tumor cells or forced expression of ZEB1 in basal-like tumor cells, two triple-negative breast cancer (TNBC) subtypes, to demonstrate that ZEB1 represses POLQ expression. ZEB1, a master epithelial-to-mesenchymal transition-inducing transcription factor, interacted directly with the POLQ promoter. Moreover, downregulation of POLQ by ZEB1 fostered micronuclei formation in TNBC tumor cell lines. Consequently, ZEB1 expression prevented TMEJ activity, with a major impact on genome integrity. In conclusion, we showed that ZEB1 directly inhibits the expression of POLQ and, therefore, TMEJ activity, controlling both stability and integrity of breast cancer cell genomes. SIGNIFICANCE: These findings uncover an original mechanism of TMEJ regulation, highlighting ZEB1 as a key player in genome stability during cancer progression via its repression of POLQ.See related commentary by Carvajal-Maldonado and Wood, p. 1441.


Asunto(s)
Neoplasias de la Mama , Factores de Transcripción , Neoplasias de la Mama/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Mutágenos , Factores de Transcripción/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
14.
Am J Cancer Res ; 10(10): 3370-3381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163276

RESUMEN

Spatial organization of tumor microenvironment (TME) may influence tumor response to immunomodulatory therapies. Zeb1 is a driver of epithelial-mesenchymal transition, with several roles in immune cell development, however its role in shaping of the immune TME is not fully explored. We conducted a pre-multiplex spatial analysis study to verify whether Zeb1 influences spatial distribution of tumor-infiltrating lymphocytes (TILs) in triple negative breast cancer (TNBC). We applied single and double immunohistochemistry to analyze spatial relationships between CD8+, FoxP3+ and CD20+ tumor-infiltrating lymphocytes (TILs) and the cells expressing Zeb1 in formalin-fixed, paraffin-embedded surgical specimens of 113 TNBCs. 15.5% of cases had Zeb1+ tumor cells and 72.8% of cases had stroma rich in Zeb1+ cells. Low density of intratumoral CD8+ TILs was observed in almost all TNBCs with high or moderate Zeb1+ expression in tumor cells (22/23 cases, 95.6%), and in 90.4% of TNBCs (75/83 cases) with stroma rich in Zeb1+ cells. On the other side, a majority of TNBCs with stroma rich in Zeb1+ cells had high density of stromal CD8+ TILs (55/83 cases, 66.3%). These associations were not observed between Zeb1-expressing cells and FoxP3+ or CD20+ TILs. This in situ analysis showed specific spatial relationship between tumor or stromal Zeb1+ cells and CD8+ TILs, which need to be validated in other cohorts. Zeb1 was highlighted both as a marker of tumor cell EMT and of tumor stroma richness in mesenchymal cells. Several hypotheses about causes of the observed relationship between Zeb1 and TILs are generated and the approaches to verify them discussed. Zeb1 is worth further investigation as a potential biomarker of intratumor immunosuppression of TNBC and of its response to immunotherapies.

15.
Nat Commun ; 11(1): 3431, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647202

RESUMEN

Claudin-low breast cancers are aggressive tumors defined by the low expression of key components of cellular junctions, associated with mesenchymal and stemness features. Although they are generally considered as the most primitive breast malignancies, their histogenesis remains elusive. Here we show that this molecular subtype of breast cancers exhibits a significant diversity, comprising three main subgroups that emerge from unique evolutionary processes. Genetic, gene methylation and gene expression analyses reveal that two of the subgroups relate, respectively, to luminal breast cancers and basal-like breast cancers through the activation of an EMT process over the course of tumor progression. The third subgroup is closely related to normal human mammary stem cells. This unique subgroup of breast cancers shows a paucity of genomic aberrations and a low frequency of TP53 mutations, supporting the emerging notion that the intrinsic properties of the cell-of-origin constitute a major determinant of the genetic history of tumorigenesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Claudinas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Diferenciación Celular , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Genoma Humano , Humanos , Ploidias , Transducción de Señal/genética
16.
Virchows Arch ; 475(1): 121-125, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30847562

RESUMEN

Although epithelial-to-mesenchymal transition (EMT) has been described in the development of complete hydatidiform moles and the invasion of the maternal decidua by trophoblasts during normal human placentation, its implication in gestational trophoblastic neoplasm (GTN) without villi is totally unknown. We studied the immunoexpression of EMT transcription factors (TWIST1, ZEB1, ZEB2), E-cadherin, and vimentin in 18 trophoblastic tumors and pseudo-tumors. Weak nuclear TWIST1 immunostaining was seen in 5% to 10% of all trophoblastic cells, without ZEB1 and ZEB2 nuclear staining. Trophoblastic cells did not express vimentin, and the expression of E-cadherin was maintained in all cases, indicating the absence of EMT features in GTN.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedad Trofoblástica Gestacional/patología , Neoplasias Uterinas/patología , Biomarcadores de Tumor/análisis , Femenino , Enfermedad Trofoblástica Gestacional/química , Humanos , Inmunohistoquímica , Embarazo , Neoplasias Uterinas/química
17.
Virchows Arch ; 475(1): 85-94, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30739164

RESUMEN

Several subtypes of high-grade endometrial carcinomas (ECs) contain an undifferentiated component of non-epithelial morphology, including undifferentiated and dedifferentiated carcinomas and carcinosarcomas (CSs). The mechanism by which an EC undergoes dedifferentiation has been the subject of much debate. The epithelial-mesenchymal transition (EMT) is one of the mechanisms implicated in the transdifferentiation of high-grade carcinomas. To improve our understanding of the role of EMT in these tumors, we studied a series of 89 carcinomas including 14 undifferentiated/dedifferentiated endometrial carcinomas (UECs/DECs), 49 CSs (21 endometrial, 29 tubo-ovarian and peritoneal), 17 endometrioid carcinomas (grade 1-3), and 9 high-grade serous carcinomas of the uterus, using a panel of antibodies targeting known epithelial markers (Pan-Keratin AE1/AE3 and E-cadherin), mesenchymal markers (N-cadherin), EMT transcription factors (TFs) (ZEB1, ZEB2, TWIST1), PAX8, estrogen receptors (ER), progesterone receptors (PR), and the p53 protein. At least one of the three EMT markers (more frequently ZEB1) was positive in the sarcomatous component of 98% (n = 48/49) of CSs and 98% (n = 13/14) of the undifferentiated component of UEC/DEC. In addition, 86% of sarcomatous areas of CSs and 79% of the undifferentiated component of UEC/DEC expressed all three EMT-TFs. The expression of these markers was associated with the loss of or reduction in epithelial markers (Pan-keratin, E-cadherin), PAX8, and hormone receptors. In contrast, none of the endometrioid and serous endometrial carcinomas expressed ZEB1, while 6% and 36% of endometrioid and 11% and 25% of serous carcinomas focally expressed ZEB2 and TWIST1, respectively. Although morphologically different, EMT appears to be implicated in the dedifferentiation in both CSs and UEC/DEC. Indeed, we speculate that the occurrence of EMT in a well differentiated endometrioid carcinoma may consecutively lead to a dedifferentiated and undifferentiated carcinoma, while in a type II carcinoma, it may result in a CS.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma/química , Transición Epitelial-Mesenquimal , Neoplasias Uterinas/química , Carcinoma/clasificación , Carcinoma/patología , Carcinoma Endometrioide/química , Carcinoma Endometrioide/patología , Carcinosarcoma/química , Carcinosarcoma/patología , Desdiferenciación Celular , Neoplasias Endometriales/química , Neoplasias Endometriales/patología , Femenino , Humanos , Inmunohistoquímica , Clasificación del Tumor , Proteínas Nucleares/análisis , Estudios Retrospectivos , Proteína 1 Relacionada con Twist/análisis , Neoplasias Uterinas/clasificación , Neoplasias Uterinas/patología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/análisis , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/análisis
18.
Cancer Cell ; 33(2): 164-172, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29438693

RESUMEN

Completion of early stages of tumorigenesis relies on the dynamic interplay between the initiating oncogenic event and the cellular context. Here, we review recent findings indicating that each differentiation stage within a defined cellular lineage is associated with a unique susceptibility to malignant transformation when subjected to a specific oncogenic insult. This emerging notion, named cellular pliancy, provides a rationale for the short delay in the development of pediatric cancers of prenatal origin. It also highlights the critical role of cellular reprogramming in early steps of malignant transformation of adult differentiated cells and its impact on the natural history of tumorigenesis.


Asunto(s)
Carcinogénesis/patología , Transformación Celular Neoplásica/genética , Reprogramación Celular/genética , Células Madre Neoplásicas/citología , Animales , Carcinogénesis/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Humanos
19.
Mol Cell Biol ; 24(13): 5808-20, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15199137

RESUMEN

The CCR4-associated protein CAF1 has been demonstrated to play several roles in the control of transcription and of mRNA decay. To gain further insight into its physiological function, we generated CAF1-deficient mice. They are viable, healthy, and normal in appearance; however, mCAF1(-/-) male mice are sterile. The crossing of mCAF1(+/-) mice gave a Mendelian ratio of mCAF1(+/+), mCAF1(+/-), and mCAF1(-/-) pups, indicating that haploid mCAF1-deficient germ cells differentiate normally. The onset of the defect occurs during the first wave of spermatogenesis at 19 to 20 days after birth, during progression of pachytene spermatocytes to haploid spermatids and spermatozoa. Early disruption of spermatogenesis was evidenced by Sertoli cell vacuolization and tubular disorganization. The most mature germ cells were the most severely depleted, but progressively all germ cells were affected, giving Sertoli cell-only tubes, large interstitial spaces, and small testes. This phenotype could be linked to a defect(s) in germ cells and/or to inadequate Sertoli cell function, leading to seminiferous tubule disorganization and finally to a total disappearance of germ cells. The mCAF1-deficient mouse provides a new model of failed spermatogenesis in the adult that may be relevant to some cases of human male sterility.


Asunto(s)
Proteínas/fisiología , Espermatogénesis , Animales , Exorribonucleasas , Células Germinativas/patología , Haploidia , Inmunohistoquímica , Infertilidad Masculina , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica , Fenotipo , Proteínas/genética , Proteínas Represoras , Ribonucleasas , Túbulos Seminíferos/patología , Células de Sertoli/patología , Factores de Transcripción
20.
Mol Cell Oncol ; 4(4): e1338931, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28868351

RESUMEN

Aberrant cell proliferation induced by activated oncogenes triggers oxidative stress and uncontrolled DNA replication, promoting genomic instability. We recently reported that human mammary stem cells exhibit the unique capacity to withstand an oncogenic activation by dint of an anti-oxidant program driven by the ZEB1 transcription factor. This pre-emptive program prevents the onset of chromosomal instability, leading to the development of tumors with unique pathological features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA