Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 23(6): 826-833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740957

RESUMEN

Lithium-rich oxide cathodes lose energy density during cycling due to atomic disordering and nanoscale structural rearrangements, which are both challenging to characterize. Here we resolve the kinetics and thermodynamics of these processes in an exemplar layered Li-rich (Li1.2-xMn0.8O2) cathode using a combined approach of ab initio molecular dynamics and cluster expansion-based Monte Carlo simulations. We identify a kinetically accessible and thermodynamically favourable mechanism to form O2 molecules in the bulk, involving Mn migration and driven by interlayer oxygen dimerization. At the top of charge, the bulk structure locally phase segregates into MnO2-rich regions and Mn-deficient nanovoids, which contain O2 molecules as a nanoconfined fluid. These nanovoids are connected in a percolating network, potentially allowing long-range oxygen transport and linking bulk O2 formation to surface O2 loss. These insights highlight the importance of developing strategies to kinetically stabilize the bulk structure of Li-rich O-redox cathodes to maintain their high energy densities.

2.
J Am Chem Soc ; 146(31): 21889-21902, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056215

RESUMEN

Resolving anion configurations in heteroanionic materials is crucial for understanding and controlling their properties. For anion-disordered oxyfluorides, conventional Bragg diffraction cannot fully resolve the anionic structure, necessitating alternative structure determination methods. We have investigated the anionic structure of anion-disordered cubic (ReO3-type) TiOF2 using X-ray pair distribution function (PDF), 19F MAS NMR analysis, density functional theory (DFT), cluster expansion modeling, and genetic-algorithm structure prediction. Our computational data predict short-range anion ordering in TiOF2, characterized by predominant cis-[O2F4] titanium coordination, resulting in correlated anion disorder at longer ranges. To validate our predictions, we generated partially disordered supercells using genetic-algorithm structure prediction and computed simulated X-ray PDF data and 19F MAS NMR spectra, which we compared directly to experimental data. To construct our simulated 19F NMR spectra, we derived new transformation functions for mapping calculated magnetic shieldings to predicted magnetic chemical shifts in titanium (oxy)fluorides, obtained by fitting DFT-calculated magnetic shieldings to previously published experimental chemical shift data for TiF4. We find good agreement between our simulated and experimental data, which supports our computationally predicted structural model and demonstrates the effectiveness of complementary experimental and computational techniques in resolving anionic structure in anion-disordered oxyfluorides. From additional DFT calculations, we predict that increasing anion disorder makes lithium intercalation more favorable by, on average, up to 2 eV, highlighting the significant effect of variations in short-range order on the intercalation properties of anion-disordered materials.

3.
J Am Chem Soc ; 145(43): 23739-23754, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844155

RESUMEN

Introducing compositional or structural disorder within crystalline solid electrolytes is a common strategy for increasing their ionic conductivity. (M,Sn)F2 fluorites have previously been proposed to exhibit two forms of disorder within their cationic host frameworks: occupational disorder from randomly distributed M and Sn cations and orientational disorder from Sn(II) stereoactive lone pairs. Here, we characterize the structure and fluoride-ion dynamics of cubic BaSnF4, using a combination of experimental and computational techniques. Rietveld refinement of the X-ray diffraction (XRD) data confirms an average fluorite structure with {Ba,Sn} cation disorder, and the 119Sn Mössbauer spectrum demonstrates the presence of stereoactive Sn(II) lone pairs. X-ray total-scattering PDF analysis and ab initio molecular dynamics simulations reveal a complex local structure with a high degree of intrinsic fluoride-ion disorder, where 1/3 of fluoride ions occupy octahedral "interstitial" sites: this fluoride-ion disorder is a consequence of repulsion between Sn lone pairs and fluoride ions that destabilizes Sn-coordinated tetrahedral fluoride-ion sites. Variable-temperature 19F NMR experiments and analysis of our molecular dynamics simulations reveal highly inhomogeneous fluoride-ion dynamics, with fluoride ions in Sn-rich local environments significantly more mobile than those in Ba-rich environments. Our simulations also reveal dynamical reorientation of the Sn lone pairs that is biased by the local cation configuration and coupled to the local fluoride-ion dynamics. We end by discussing the effect of host-framework disorder on long-range diffusion pathways in cubic BaSnF4.

4.
Phys Rev Lett ; 127(13): 135502, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34623837

RESUMEN

Polycrystalline solids can exhibit material properties that differ significantly from those of equivalent single-crystal samples, in part, because of a spontaneous redistribution of mobile point defects into so-called space-charge regions adjacent to grain boundaries. The general analytical form of these space-charge regions is known only in the dilute limit, where defect-defect correlations can be neglected. Using kinetic Monte Carlo simulations of a three-dimensional Coulomb lattice gas, we show that grain boundary space-charge regions in nondilute solid electrolytes exhibit overscreening-damped oscillatory space-charge profiles-and underscreening-decay lengths that are longer than the corresponding Debye length and that increase with increasing defect-defect interaction strength. Overscreening and underscreening are known phenomena in concentrated liquid electrolytes, and the observation of functionally analogous behavior in solid electrolyte space-charge regions suggests that the same underlying physics drives behavior in both classes of systems. We therefore expect theoretical approaches developed to study nondilute liquid electrolytes to be equally applicable to future studies of solid electrolytes.

5.
Inorg Chem ; 60(10): 7217-7227, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33956446

RESUMEN

The effect of crystallizing solution chemistry on the chemistry of subsequently as-grown materials was investigated for Mo-substituted iron oxides prepared by thermally activated co-precipitation. In the presence of Mo ions, we find that varying the oxidation state of the iron precursor from Fe(II) to Fe(III) causes a progressive loss of atomic long-range order with the stabilization of 2-4 nm particles for the sample prepared with Fe(III). The oxidation state of the Fe precursor also affects the distribution of Fe and Mo cations within the spinel structure. Increasing the Fe precursor oxidation state gives decreased Fe-ion occupation and increased Mo-ion occupation of tetrahedral sites, as revealed by the extended X-ray absorption fine structure. The stabilization of Mo within tetrahedral sites appears to be unexpected, considering the octahedral preferred coordination number of Mo(VI). The analysis of the atomic structure of the sample prepared with Fe(III) indicates a local ordering of vacancies and that the occupation of tetrahedral sites by Mo induces a contraction of the interatomic distances within the polyhedra as compared to Fe atoms. Moreover, the occupancy of Mo into the thermodynamic site preference of a Mo dopant in Fe2O3 assessed by density functional theory calculations points to a stronger preference for Mo substitution at octahedral sites. Hence, we suggest that the synthetized compound is thermodynamically metastable, that is, kinetically trapped. Such a state is suggested to be a consequence of the tetrahedral site occupation by Mo ions. The population of these sites, known to be reactive sites enabling particle growth, is concomitant with the stabilization of very small particles. We confirmed our hypothesis by using a blank experiment without Mo ions, further supporting the impact of tetrahedral Mo ions on the growth of iron oxide nanoparticles. Our findings provide new insights into the relationships between the Fe-chemistry of the crystallizing solution and the structural features of the as-grown Mo-substituted Fe-oxide materials.

6.
Philos Trans A Math Phys Eng Sci ; 379(2211): 20190451, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34628942

RESUMEN

The ability of some solid materials to exhibit exceptionally high ionic conductivities has been known since the observations of Michael Faraday in the nineteenth century (Faraday M. 1838 Phil. Trans. R. Soc. 90), yet a detailed understanding of the atomic-scale physics that gives rise to this behaviour remains an open scientific question. This theme issue collects articles from researchers working on this question of understanding fast-ion conduction in solid electrolytes. The issue opens with two perspectives, both of which discuss concepts that have been proposed as schema for understanding fast-ion conduction. The first perspective presents an overview of a series of experimental NMR studies, and uses this to frame discussion of the roles of ion-ion interactions, crystallographic disorder, low-dimensionality of crystal structures, and fast interfacial diffusion in nanocomposite materials. The second perspective reviews computational studies of halides, oxides, sulfides and hydroborates, focussing on the concept of frustration and how this can manifest in different forms in various fast-ion conductors. The issue also includes five primary research articles, each of which presents a detailed analysis of the factors that affect microscopic ion-diffusion in specific fast-ion conducting solid electrolytes, including oxide-ion conductors [Formula: see text] and [Formula: see text], lithium-ion conductors [Formula: see text] and [Formula: see text], and the prototypical fluoride-ion conductor [Formula: see text]-[Formula: see text]. This article is part of the Theo Murphy meeting issue 'Understanding fast-ion conduction in solid electrolytes'.

7.
J Lipid Res ; 61(3): 432-444, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31806727

RESUMEN

Plasma lipoprotein (a) [Lp(a)] levels are largely determined by variation in the LPA gene, which codes for apo(a). Genome-wide association studies (GWASs) have identified nonsynonymous variants in LPA that associate with low Lp(a) levels, although their effect on apo(a) function is unknown. We investigated two such variants, R990Q and R1771C, which were present in four null Lp(a) individuals, for structural and functional effects. Sequence alignments showed the R990 and R1771 residues to be highly conserved and homologous to each other and to residues associated with plasminogen deficiency. Structural modeling showed both residues to make several polar contacts with neighboring residues that would be ablated on substitution. Recombinant expression of the WT and R1771C apo(a) in liver and kidney cells showed an abundance of an immature form for both apo(a) proteins. A mature form of apo(a) was only seen with the WT protein. Imaging of the recombinant apo(a) proteins in conjunction with markers of the secretory pathway indicated a poor transit of R1771C into the Golgi. Furthermore, the R1771C mutant displayed a glycosylation pattern consistent with ER, but not Golgi, glycosylation. We conclude that R1771 and the equivalent R990 residue facilitate correct folding of the apo(a) kringle structure and mutations at these positions prevent the proper folding required for full maturation and secretion. To our knowledge, this is the first example of nonsynonymous variants in LPA being causative of a null Lp(a) phenotype.


Asunto(s)
Apoproteína(a)/genética , Lipoproteína(a)/genética , Plasminógeno/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Anciano , Alelos , Línea Celular Tumoral , Estudios de Cohortes , Humanos , Lipoproteína(a)/sangre , Masculino , Persona de Mediana Edad , Mutación , Plasminógeno/deficiencia
8.
J Am Chem Soc ; 142(50): 21210-21219, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33284622

RESUMEN

Strategies to enhance ionic conductivities in solid electrolytes typically focus on the effects of modifying their crystal structures or of tuning mobile-ion stoichiometries. A less-explored approach is to modulate the chemical bonding interactions within a material to promote fast lithium-ion diffusion. Recently, the idea of a solid-electrolyte inductive effect has been proposed, whereby changes in bonding within the solid-electrolyte host framework modify the potential energy landscape for the mobile ions, resulting in an enhanced ionic conductivity. Direct evidence for a solid-electrolyte inductive effect, however, is lacking-in part because of the challenge of quantifying changes in local bonding interactions within a solid-electrolyte host framework. Here, we consider the evidence for a solid-electrolyte inductive effect in the archetypal superionic lithium-ion conductor Li10Ge1-xSnxP2S12. Substituting Ge for Sn weakens the {Ge,Sn}-S bonding interactions and increases the charge density associated with the S2- ions. This charge redistribution modifies the Li+ substructure causing Li+ ions to bind more strongly to the host framework S2- anions, which in turn modulates the Li+ ion potential energy surface, increasing local barriers for Li+ ion diffusion. Each of these effects is consistent with the predictions of the solid-electrolyte inductive effect model. Density functional theory calculations predict that this inductive effect occurs even in the absence of changes to the host framework geometry due to Ge → Sn substitution. These results provide direct evidence in support of a measurable solid-electrolyte inductive effect and demonstrate its application as a practical strategy for tuning ionic conductivities in superionic lithium-ion conductors.

9.
Ann Neurol ; 86(5): 743-753, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393626

RESUMEN

OBJECTIVE: Vagus nerve stimulation (VNS) is a common treatment for medically intractable epilepsy, but response rates are highly variable, with no preoperative means of identifying good candidates. This study aimed to predict VNS response using structural and functional connectomic profiling. METHODS: Fifty-six children, comprising discovery (n = 38) and validation (n = 18) cohorts, were recruited from 3 separate institutions. Diffusion tensor imaging was used to identify group differences in white matter microstructure, which in turn informed beamforming of resting-state magnetoencephalography recordings. The results were used to generate a support vector machine learning classifier, which was independently validated. This algorithm was compared to a second classifier generated using 31 clinical covariates. RESULTS: Treatment responders demonstrated greater fractional anisotropy in left thalamocortical, limbic, and association fibers, as well as greater connectivity in a functional network encompassing left thalamic, insular, and temporal nodes (p < 0.05). The resulting classifier demonstrated 89.5% accuracy and area under the receiver operating characteristic (ROC) curve of 0.93 on 10-fold cross-validation. In the external validation cohort, this model demonstrated an accuracy of 83.3%, with a sensitivity of 85.7% and specificity of 75.0%. This was significantly superior to predictions using clinical covariates alone, which exhibited an area under the ROC curve of 0.57 (p < 0.008). INTERPRETATION: This study provides the first multi-institutional, multimodal connectomic prediction algorithm for VNS, and provides new insights into its mechanism of action. Reliable identification of VNS responders is critical to mitigate surgical risks for children who may not benefit, and to ensure cost-effective allocation of health care resources. ANN NEUROL 2019;86:743-753.


Asunto(s)
Conectoma/métodos , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/terapia , Máquina de Vectores de Soporte , Resultado del Tratamiento , Estimulación del Nervio Vago/métodos , Adolescente , Niño , Preescolar , Imagen de Difusión Tensora/métodos , Epilepsia Refractaria/diagnóstico por imagen , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Magnetoencefalografía/métodos , Masculino , Selección de Paciente
10.
Inorg Chem ; 59(15): 11009-11019, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32673483

RESUMEN

The lithium argyrodites Li6PS5X (X = Cl, Br, I) exhibit high lithium-ion conductivities, making them promising candidates for use in solid-state batteries. These solid electrolytes can show considerable substitutional X-/S2- anion disorder, typically correlated with higher lithium-ion conductivities. The atomic-scale effects of this anion site disorder within the host lattice-in particular how lattice disorder modulates the lithium substructure-are not well understood. Here, we characterize the lithium substructure in Li6PS5X as a function of temperature and anion site disorder, using Rietveld refinements against temperature-dependent neutron diffraction data. Analysis of these high-resolution diffraction data reveals an additional lithium position previously unreported for Li6PS5X argyrodites, suggesting that the lithium conduction pathway in these materials differs from the most common model proposed in earlier studies. An analysis of the Li+ positions and their radial distributions reveals that greater inhomogeneity of the local anionic charge, due to X-/S2- site disorder, is associated with more spatially diffuse lithium distributions. This observed coupling of site disorder and lithium distribution provides a possible explanation for the enhanced lithium transport in anion-disordered lithium argyrodites and highlights the complex interplay between the anion configuration and lithium substructure in this family of superionic conductors.

11.
Angew Chem Int Ed Engl ; 59(43): 19247-19253, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32649793

RESUMEN

Aluminium batteries constitute a safe and sustainable high-energy-density electrochemical energy-storage solution. Viable Al-ion batteries require suitable electrode materials that can readily intercalate high-charge Al3+ ions. Here, we investigate the Al3+ intercalation chemistry of anatase TiO2 and how chemical modifications influence the accommodation of Al3+ ions. We use fluoride- and hydroxide-doping to generate high concentrations of titanium vacancies. The coexistence of these hetero-anions and titanium vacancies leads to a complex insertion mechanism, attributed to three distinct types of host sites: native interstitial sites, single vacancy sites, and paired vacancy sites. We demonstrate that Al3+ induces a strong local distortion within the modified TiO2 structure, which affects the insertion properties of the neighbouring host sites. Overall, specific structural features induced by the intercalation of highly polarising Al3+ ions should be considered when designing new electrode materials for polyvalent batteries.

12.
Brain Topogr ; 32(3): 461-471, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659389

RESUMEN

Autism spectrum disorder (ASD) is characterized by abnormal functional organization of brain networks, which may underlie the cognitive and social impairments observed in affected individuals. The present study characterizes unique intrinsic connectivity within- and between- neural networks in children through to adults with ASD, relative to controls. Resting state fMRI data were analyzed in 204 subjects, 102 with ASD and 102 age- and sex-matched controls (ages 7-40 years), acquired on a single scanner. ASD was assessed using the autism diagnostic observation schedule (ADOS). BOLD correlations were calculated between 47 regions of interest, spanning seven resting state brain networks. Partial least squares (PLS) analyses evaluated the association between connectivity patterns and ASD diagnosis as well as ASD severity scores. PLS demonstrated dissociable connectivity patterns in those with ASD, relative to controls. Similar patterns were observed in the whole cohort and in a subgroup analysis of subjects under 18 years of age. Greater inter-network connectivity was seen in ASD with greater intra-network connectivity in controls. In conclusion, stronger inter-network and weaker intra-network resting state-fMRI BOLD correlations characterize ASD and may differentiate control and ASD cohorts. These findings are relevant to understanding ASD as a disruption of network topology.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios de Casos y Controles , Niño , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
13.
J Am Chem Soc ; 140(47): 16330-16339, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30380843

RESUMEN

Solid-state batteries with inorganic solid electrolytes are currently being discussed as a more reliable and safer future alternative to the current lithium-ion battery technology. To compete with state-of-the-art lithium-ion batteries, solid electrolytes with higher ionic conductivities are needed, especially if thick electrode configurations are to be used. In the search for optimized ionic conductors, the lithium argyrodites have attracted a lot of interest. Here, we systematically explore the influence of aliovalent substitution in Li6+ xP1- xGe xS5I using a combination of X-ray and neutron diffraction, as well as impedance spectroscopy and nuclear magnetic resonance. With increasing Ge content, an anion site disorder is induced and the activation barrier for ionic motion drops significantly, leading to the fastest lithium argyrodite so far with 5.4 ± 0.8 mS cm-1 in a cold-pressed state and 18.4 ± 2.7 mS cm-1 upon sintering. These high ionic conductivities allow for successful implementation within a thick-electrode solid-state battery that shows negligible capacity fade over 150 cycles. The observed changes in the activation barrier and changing site disorder provide an additional approach toward designing better performing solid electrolytes.

14.
J Neurophysiol ; 119(4): 1497-1505, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357461

RESUMEN

Cross-frequency phase-amplitude coupling (cfPAC) subserves an integral role in the hierarchical organization of interregional neuronal communication and is also expressed by epileptogenic cortex during seizures. Here, we sought to characterize patterns of cfPAC expression in the anterior thalamic nuclei during seizures by studying extra-operative recordings in patients implanted with deep brain stimulation electrodes for intractable epilepsy. Nine seizures from two patients were analyzed in the peri-ictal period. CfPAC was calculated using the modulation index and interregional functional connectivity was indexed using the phase-locking value. Statistical analysis was performed within subjects on the basis of nonparametric permutation and corrected with Gaussian field theory. Five of the nine analyzed seizures demonstrated significant cfPAC. Significant cfPAC occurred during the pre-ictal and ictal periods in three seizures, as well as the postictal windows in four seizures. The preferred phase at which cfPAC occurred differed 1) in space, between the thalami of the epileptogenic and nonepileptogenic hemispheres; and 2) in time, at seizure termination. The anterior thalamic nucleus of the epileptogenic hemisphere also exhibited altered interregional phase-locking synchrony concurrent with the expression of cfPAC. By analyzing extraoperative recordings from the anterior thalamic nuclei, we show that cfPAC associated with altered interregional phase synchrony is lateralized to the thalamus of the epileptogenic hemisphere during seizures. Electrophysiological differences in cfPAC, including preferred phase of oscillatory interactions may be further investigated as putative targets for individualized neuromodulation paradigms in patients with drug-resistant epilepsy. NEW & NOTEWORTHY The association between fast brain activity and slower oscillations is an integral mechanism for hierarchical neuronal communication, which is also manifested in epileptogenic cortex. Our data suggest that the same phenomenon occurs in the anterior thalamic nuclei during seizures. Further, the preferred phase of modulation shows differences in space, between the epileptogenic and nonepileptogenic hemispheres and time, as seizures terminate. Our data encourage the study of cross-frequency coupling for targeted, individualized closed-loop stimulation paradigms.


Asunto(s)
Núcleos Talámicos Anteriores/fisiopatología , Corteza Cerebral/fisiopatología , Conectoma/métodos , Sincronización de Fase en Electroencefalografía/fisiología , Electroencefalografía/métodos , Red Nerviosa/fisiopatología , Convulsiones/fisiopatología , Adolescente , Adulto , Estimulación Encefálica Profunda , Electrodos Implantados , Epilepsia/terapia , Femenino , Humanos , Masculino
15.
Nat Mater ; 16(11): 1142-1148, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28920941

RESUMEN

In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials, providing a new strategy for the chemical design of materials for practical multivalent batteries.

16.
Phys Rev Lett ; 121(26): 267004, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636125

RESUMEN

In cuprate superconductors, high magnetic fields have been used extensively to suppress superconductivity and expose the underlying normal state. Early measurements revealed insulatinglike behavior in underdoped material versus temperature T, in which resistivity increases on cooling with a puzzling log(1/T) form. We instead use microwave measurements of flux-flow resistivity in YBa_{2}Cu_{3}O_{6+y} and Tl_{2}Ba_{2}CuO_{6+δ} to study charge transport deep inside the superconducting phase, in the low-temperature and low-field regime. Here, the transition from metallic low-temperature resistivity (dρ/dT>0) to a log(1/T) upturn persists throughout the superconducting doping range, including a regime at high carrier dopings in which the field-revealed normal-state resistivity is Fermi-liquid-like. The log(1/T) form is thus likely a signature of d-wave superconducting order, and the field-revealed normal state's log(1/T) resistivity may indicate the free-flux-flow regime of a phase-disordered d-wave superconductor.

17.
Cereb Cortex ; 27(8): 4094-4105, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600850

RESUMEN

Identifying trajectories of early white matter development is important for understanding atypical brain development and impaired functional outcomes in children born very preterm (<32 weeks gestational age [GA]). In this study, 161 diffusion images were acquired in children born very preterm (median GA: 29 weeks) shortly following birth (75), term-equivalent (39), 2 years (18), and 4 years of age (29). Diffusion tensors were computed to obtain measures of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), which were aligned and averaged. A paediatric atlas was applied to obtain diffusion metrics within 12 white matter tracts. Developmental trajectories across time points demonstrated age-related changes which plateaued between term-equivalent and 2 years of age in the majority of posterior tracts and between 2 and 4 years of age in anterior tracts. Between preterm and term-equivalent scans, FA rates of change were slower in anterior than posterior tracts. Partial least squares analyses revealed associations between slower MD and RD rates of change within the external and internal capsule with lower intelligence quotients and language scores at 4 years of age. These results uniquely demonstrate early white matter development and its linkage to cognitive functions.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Recien Nacido Extremadamente Prematuro/crecimiento & desarrollo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Atlas como Asunto , Preescolar , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Recién Nacido , Inteligencia , Lenguaje , Estudios Longitudinales , Masculino , Pruebas Neuropsicológicas , Factores Sexuales
18.
BMC Pediatr ; 17(1): 173, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738850

RESUMEN

BACKGROUND: Children with traumatic brain injury (TBI) are frequently at risk of long-term impairments of attention and executive functioning but these problems are difficult to predict. Although deficits have been reported to vary with injury severity, age at injury and sex, prognostication of outcome remains imperfect at a patient-specific level. The objective of this proof of principle study was to evaluate a variety of patient variables, along with six brain-specific and inflammatory serum protein biomarkers, as predictors of long-term cognitive outcome following paediatric TBI. METHOD: Outcome was assessed in 23 patients via parent-rated questionnaires related to attention deficit hyperactivity disorder (ADHD) and executive functioning, using the Conners 3rd Edition Rating Scales (Conners-3) and Behaviour Rating Inventory of Executive Function (BRIEF) at a mean time since injury of 3.1 years. Partial least squares (PLS) analyses were performed to identify factors measured at the time of injury that were most closely associated with outcome on (1) the Conners-3 and (2) the Behavioural Regulation Index (BRI) and (3) Metacognition Index (MI) of the BRIEF. RESULTS: Higher levels of neuron specific enolase (NSE) and lower levels of soluble neuron cell adhesion molecule (sNCAM) were associated with higher scores on the inattention, hyperactivity/impulsivity and executive functioning scales of the Conners-3, as well as working memory and initiate scales of the MI from the BRIEF. Higher levels of NSE only were associated with higher scores on the inhibit scale of the BRI. CONCLUSIONS: NSE and sNCAM show promise as reliable, early predictors of long-term attention-related and executive functioning problems following paediatric TBI.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/etiología , Biomarcadores/sangre , Lesiones Traumáticas del Encéfalo/psicología , Cognición , Función Ejecutiva , Memoria a Corto Plazo , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/sangre , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/diagnóstico , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Pronóstico , Estudios Prospectivos
19.
J Pediatr ; 170: 90-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26707586

RESUMEN

OBJECTIVE: To identify perinatal risk factors associated with long-term neurocognitive and behavioral impairments in children born very preterm using a multivariate, partial least squares approach. STUDY DESIGN: Twenty-seven perinatal clinical and magnetic resonance imaging measures were collected at birth and during the neonatal intensive care stay for 105 neonates born very preterm (≤ 32 weeks gestational age). One-half of the children returned for neuropsychological assessments at 2 and 4 years of age. Parent-reported behavioral measures were also obtained at 4 years of age. Three partial least squares analyses were performed to determine associations between clinical and radiologic measures with cognitive outcomes at 2 and 4 years of age, as well as with behavioral measures at 4 years of age. RESULTS: Within the first components of each analysis, only intrauterine growth restriction, male sex, and absence of antenatal corticosteroid use were associated with poorer cognitive and language ability at 2 and 4 years of age, accounting for 79.6% and 71.4% of the total variance, respectively. In addition, white matter injury at term-equivalent age contributed to more problematic internalizing behaviors, behavioral symptoms, and impaired executive function at 4 years of age, accounting for 67.9% of the total variance. CONCLUSIONS: Using this data-driven multivariate approach, specific measures in prenatal and early postnatal life are shown to be selectively and significantly associated with cognitive and behavioral outcomes in children born very preterm. Early detection of risk factors can help inform prognoses of children at greatest risk of long-term impairments.


Asunto(s)
Encéfalo/patología , Desarrollo Infantil , Discapacidades del Desarrollo/patología , Recien Nacido Extremadamente Prematuro , Imagen por Resonancia Magnética/métodos , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Pruebas Neuropsicológicas , Embarazo , Nacimiento Prematuro/fisiopatología , Factores de Riesgo
20.
Phys Rev Lett ; 116(13): 135901, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27081991

RESUMEN

We have performed long time scale molecular dynamics simulations of the cubic and tetragonal phases of the solid lithium-ion electrolyte Li_{7}La_{3}Zr_{2}O_{12} (LLZO), using a first-principles parametrized interatomic potential. Collective lithium transport was analyzed by identifying dynamical excitations: persistent ion displacements over distances comparable to the separation between lithium sites, and stringlike clusters of ions that undergo cooperative motion. We find that dynamical excitations in c-LLZO (cubic) are frequent, with participating lithium numbers following an exponential distribution, mirroring the dynamics of fragile glasses. In contrast, excitations in t-LLZO (tetragonal) are both temporally and spatially sparse, consisting preferentially of highly concerted lithium motion around closed loops. This qualitative difference is explained as a consequence of lithium ordering in t-LLZO and provides a mechanistic basis for the much lower ionic conductivity of t-LLZO compared to c-LLZO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA