Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 72(1): 39-53, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35699757

RESUMEN

Wilms' tumor 1 (WT1) is a promising tumor-associated antigen for cancer immunotherapy. We developed an oral protein vaccine platform composed of WT1-anchored, genetically engineered Bifidobacterium longum (B. longum) and conducted an in vivo study in mice to examine its anticancer activity. Mice were orally treated with phosphate-buffered saline, wild-type B. longum105-A, B. longum 2012 displaying only galacto-N-biose/lacto-N-biose I-binding protein (GLBP), and WT1 protein- and GLBP-expressing B. longum 420. Tumor size reduced significantly in the B. longum 420 group than in the B. longum 105-A and 2012 groups (P < 0.00 l each), indicating B. longum 420's antitumor activity via WT1-specific immune responses. CD8+ T cells played a major role in the antitumor activity of B. longum 420. The proportion of CD103+CD11b+CD11c+ dendritic cells (DCs) increased in the Peyer's patches (PPs) from mice in the B. longum 420 group, indicating the definite activation of DCs. In the PPs, the number and proportion of CD8+ T cells capable of producing interferon-gamma were significantly greater in the B. longum 420 group than in the B. longum 2012 group (P < 0.05 or < 0.01). The production of WT1-specific IgG antibody was significantly higher in the B. longum 420 group than in the 2012 group (P < 0.05). The B. longum 420 group showed the most intense intratumoral infiltration of CD4+ and CD8+ T cells primed by activated DCs in the PPs of mice in the B. longum 420 group. Our findings provide insights into a novel, intestinal bacterium-based, cancer immunotherapy through intestinal immunity.


Asunto(s)
Bifidobacterium longum , Vacunas contra el Cáncer , Leucemia Mieloide Aguda , Ratones , Animales , Proteínas WT1 , Linfocitos T CD8-positivos
2.
Cancer Immunol Immunother ; 72(7): 2347-2356, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36939853

RESUMEN

CD4+ T cells that recognize antigenic peptides presented on HLA class II are essential for inducing an optimal anti-tumor immune response, and adoptive transfer of tumor antigen-specific TCR-transduced CD4+ T cells with high responsiveness against tumor is a promising strategy for cancer treatment. Whereas a precise evaluation method of functional avidity, an indicator of T cell responsiveness against tumors, has been established for HLA class I-restricted TCRs, it remains unestablished for HLA class II-restricted TCRs. In this study, we generated a novel platform cell line, CD4-2D3, in which GFP reporter was expressed by NFAT activation via TCR signaling, for correctly evaluating functional avidity of HLA class II-restricted TCRs. Furthermore, using this platform cell line, we succeeded in maturating functional avidity of an HLA class II-restricted TCR specific for a WT1-derived helper peptide by substituting amino acids in complementarity determining region 3 (CDR3) of the TCR. Importantly, we demonstrated that transduction of an avidity-maturated TCR conferred strong cytotoxicity against WT1-expressing leukemia cells on CD4+ T cells, compared to that of its original TCR. Thus, CD4-2D3 cell line should be useful not only to evaluate TCR functional avidity in HLA class II-restricted TCRs but also to screen appropriate TCRs for clinical applications such as cancer immunotherapy.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T CD4-Positivos , Antígenos de Neoplasias
3.
BMC Cancer ; 23(1): 167, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803483

RESUMEN

BACKGROUND: A Wilms' tumor 1 (WT1) oral vaccine, Bifidobacterium longum (B. longum) 420, in which the bacterium is used as a vector for WT1 protein, triggers immune responses through cellular immunity consisting of cytotoxic T lymphocytes (CTLs) and other immunocompetent cells (e.g., helper T cells). We developed a novel, oral, helper epitope-containing WT1 protein vaccine (B. longum 2656) to examine whether or not B. longum 420/2656 combination further accelerates the CD4+ T cell help-enhanced antitumor activity in a model of murine leukemia. METHODS: C1498-murine WT1-a genetically-engineered, murine leukemia cell line to express murine WT1-was used as tumor cell. Female C57BL/6 J mice were allocated to the B. longum 420, 2656, and 420/2656 combination groups. The day of subcutaneous inoculation of tumor cells was considered as day 0, and successful engraftment was verified on day 7. The oral administration of the vaccine by gavage was initiated on day 8. Tumor volume, the frequency and phenotypes of WT1-specific CTLs in CD8+ T cells in peripheral blood (PB) and tumor-infiltrating lymphocytes (TILs), as well as the proportion of interferon-gamma (INF-γ)-producing CD3+CD4+ T cells pulsed with WT135-52 peptide in splenocytes and TILs were determined. RESULTS: Tumor volume was significantly smaller (p < 0.01) in the B. longum 420/2656 combination group than in the B. longum 420 group on day 24. WT1-specific CTL frequency in CD8+ T cells in PB was significantly greater in the B. longum 420/2656 combination group than in the B. longum 420 group at weeks 4 (p < 0.05) and 6 (p < 0.01). The proportion of WT1-specific, effector memory CTLs in PB increased significantly in the B. longum 420/2656 combination group than in the B. longum 420 group at weeks 4 and 6 (p < 0.05 each). WT1-specific CTL frequency in intratumoral CD8+ T cells and the proportion of IFN-γ-producing CD3+CD4+ T cells in intratumoral CD4+ T cells increased significantly (p < 0.05 each) in the B. longum 420/2656 combination group than in the 420 group. CONCLUSIONS: B. longum 420/2656 combination further accelerated antitumor activity that relies on WT1-specific CTLs in the tumor compared with B. longum 420.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Renales , Leucemia , Tumor de Wilms , Femenino , Animales , Ratones , Proteínas WT1 , Linfocitos T CD8-positivos , Epítopos , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos , Interferón gamma
4.
Cancer Immunol Immunother ; 70(1): 253-263, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32696072

RESUMEN

Simultaneous induction of tumor antigen-specific cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) is required for an optimal anti-tumor immune response. WT1332, a 16-mer WT1-derived helper peptide, induce HTLs in an HLA class II-restricted manner and enhance the induction of WT1-specific CTLs in vitro. However, in vivo immune reaction to WT1332 vaccination in tumor-bearing patients remained unclear. Here, a striking difference in WT1-specific T cell responses was shown between WT1 CTL + WT1 helper peptide and WT1 CTL peptide vaccines in patients with recurrent glioma. WT1-specific CTLs were more strongly induced in the patients who were immunized with WT1 CTL + WT1 helper peptide vaccine, compared to those who were immunized with WT1 CTL vaccine alone. Importantly, a clear correlation was demonstrated between WT1-specific CTL and WT1332-specific HTL responses. Interestingly, two novel distinct populations of WT1-tetramerlow WT1-TCRlow CD5low and WT1-tetramerhigh WT1-TCRhigh CD5high CTLs were dominantly detected in WT1 CTL + WT1 helper peptide vaccine. Although natural WT1 peptide-reactive CTLs in the latter population were evidently less than those in the former population, the latter population showed natural WT1 peptide-specific proliferation capacity comparable to the former population, suggesting that the latter population highly expressing CD5, a marker of resistance to activation-induced cell death, should strongly expand and persist for a long time in patients. These results demonstrated the advantage of WT1 helper peptide vaccine for the enhancement of WT1-specific CTL induction by WT1 CTL peptide vaccine.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Péptidos/inmunología , Linfocitos T Citotóxicos/inmunología , Vacunas de Subunidad/inmunología , Proteínas WT1/inmunología , Antígenos CD5/inmunología , Muerte Celular/inmunología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Leucocitos Mononucleares/inmunología , Recurrencia Local de Neoplasia/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/métodos
5.
Cancer Immunol Immunother ; 70(11): 3323-3335, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34272593

RESUMEN

Helper T lymphocytes (HTLs) play a central role in cancer immunity because they can not only help the induction and proliferation of cytotoxic T lymphocytes (CTLs) but also their differentiation into cytotoxic CD4+ T cells and directly kill the target cells.This study describes the identification of three novel mouse Th epitope peptides, WT135-52, WT186-102 and WT1294-312, derived from WT1 protein, which is the most potent tumor-associated antigen. Compared to immunization with WT1 CTL peptide alone, immunization with the addition of these WT1-specific Th peptides strongly induced WT1-specific CTLs, continued to maintain them, and efficiently rejected the challenge of WT1-expressing tumor cells. Importantly, the majority of WT1-specific CTLs induced by the co-immunization with WT1 CTL and the WT1-specific Th peptides were CD44+CD62L- effector memory CD8+ T cells, which played a central role in tumor rejection. Establishment of mouse models suitable for the analysis of the detailed mechanism of these functions of HTLs is very important. These results clearly showed that WT1-specific HTLs perform an essential function in WT1-specific tumor immunity. Therefore, the WT1-specific Th peptides identified here should make a major contribution to elucidation of the mutual roles of WT1-specific CTLs and HTLs in cancer immunity in in vivo mouse models.


Asunto(s)
Antígenos de Neoplasias/inmunología , Epítopos de Linfocito T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Proteínas WT1/inmunología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/inmunología
6.
Cancer Immunol Immunother ; 68(2): 331-340, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30430205

RESUMEN

PURPOSE: The safety and clinical efficacy of WT1 human leukocyte antigen (HLA) class I peptide vaccine have been established, but the safety of a cocktail vaccine of WT1 HLA class I and II peptides has not. To verify its safety, we performed a phase I clinical trial for patients with recurrent malignant gliomas and assessed the immunological responses and survival data. PATIENTS AND METHODS: Fourteen HLA-A*24:02-positive patients with recurrent malignant glioma (2 with grade 3, 12 with grade 4) were enrolled. Every week, the patients received alternately a vaccine containing 3 mg of WT1 HLA-A*24:02-restricted (HLA class I) peptide and a cocktail vaccine of the HLA class I peptide and one of 0.75, 1.5 or 3 mg of the WT1 HLA class II peptide. For patients who showed no significant adverse effects within 6 weeks, the WT1 vaccine was continued at 2-4-week intervals. RESULTS: Eleven of the 14 patients completed WT1 vaccination for 6 weeks, while 3 patients dropped out earlier due to disease progression. All patients showed grade I level of skin disorders at the injection sites. No grade III/IV toxicity or dose-limiting toxicity was observed for any dose of WT1 HLA class II peptide. Six of the 14 patients had stable disease at 6 weeks. Median OS and 1-year OS rates were 24.7 weeks and 36%, respectively. CONCLUSION: The safety of a cocktail vaccine of WT1 HLA class I and II peptides for malignant gliomas was verified. This vaccine is, therefore, considered promising for patients with recurrent malignant glioma.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Vacunas contra el Cáncer/uso terapéutico , Glioma/tratamiento farmacológico , Vacunas de Subunidad/uso terapéutico , Adulto , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Vacunas contra el Cáncer/inmunología , Femenino , Glioma/inmunología , Glioma/patología , Antígeno HLA-A24/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Análisis de Supervivencia , Resultado del Tratamiento , Vacunación/métodos , Vacunas de Subunidad/inmunología , Proteínas WT1/inmunología
7.
Int J Cancer ; 142(11): 2375-2382, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29322496

RESUMEN

Thymic epithelial tumors are rare malignancies, and no optimal therapeutic regimen has been defined for patients with advanced disease. Patients with advanced thymic epithelial tumors, which were resistant or intolerable to prior therapies, were eligible for this study. Patients received 9 mer-WT1-derived peptide emulsified with Montanide ISA51 adjuvant via intradermal administration once a week as a monotherapy. After the 3-month-protocol treatment, the treatment was continued mostly at intervals of 2-4 weeks until disease progression or intolerable adverse events occurred. Of the 15 patients enrolled, 11 had thymic carcinoma (TC) and 4 had invasive thymoma (IT). Median period from diagnosis to the start of treatment was 13.3 and 65.5 months for TC and IT, respectively. No patients achieved a complete or partial response. Of the 8 evaluable TC patients, 6 (75.0%) had stable disease (SD) and 2 had progressive disease (PD). Of the 4 evaluable IT patients, 3 (75.0%) had SD and 1 (25.0%) had PD. Median period of monotherapy treatment was 133 and 683 days in TC and IT patients, respectively. No severe adverse events occurred during the 3-month-protocol treatment. As adverse events in long responders, thymoma-related autoimmune complications, pure red cell aplasia and myasthenia gravis occurred in two IT patients. Cerebellar hemorrhage developed in a TC patient complicated with Von Willebrand disease. Induction of WT1-specific immune responses was observed in the majority of the patients. WT1 peptide vaccine immunotherapy may have antitumor potential against thymic malignancies.


Asunto(s)
Inmunoterapia , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/patología , Péptidos/inmunología , Neoplasias del Timo/inmunología , Neoplasias del Timo/patología , Proteínas WT1/inmunología , Adulto , Anciano , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Terapia Combinada , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Glandulares y Epiteliales/diagnóstico por imagen , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias del Timo/diagnóstico por imagen , Neoplasias del Timo/tratamiento farmacológico , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Proteínas WT1/química , Proteínas WT1/metabolismo
8.
Int J Cancer ; 139(6): 1391-401, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27170523

RESUMEN

We previously evaluated Wilms' tumor gene 1 (WT1) peptide vaccination in a large number of patients with leukemia or solid tumors and have reported that HLA-A*24:02 restricted, 9-mer WT1-235 peptide (CYTWNQMNL) vaccine induces cellular immune responses and elicits WT1-235-specific cytotoxic T lymphocytes (CTLs). However, whether this vaccine induces humoral immune responses to produce WT1 antibody remains unknown. Thus, we measured IgG antibody levels against the WT1-235 peptide (WT1-235 IgG antibody) in patients with glioblastoma multiforme (GBM) receiving the WT1 peptide vaccine. The WT1-235 IgG antibody, which was undetectable before vaccination, became detectable in 30 (50.8%) of a total of 59 patients during 3 months of WT1 peptide vaccination. The dominant WT1-235 IgG antibody subclass was Th1-type, IgG1 and IgG3 . WT1-235 IgG antibody production was significantly and positively correlated with both progression-free survival (PFS) and overall survival (OS). Importantly, the combination of WT1-235 IgG antibody production and positive delayed type-hypersensitivity (DTH) to the WT1-235 peptide was a better prognostic marker for long-term OS than either parameter alone. These results suggested that WT1-235 peptide vaccination induces not only WT1-235-specific CTLs as previously described but also WT1-235-specific humoral immune responses associated with antitumor cellular immune response. Our results indicate that the WT1 IgG antibody against the WT1 peptide may be a useful predictive marker, with better predictive performance in combination with DTH to WT1 peptide, and provide a new insight into the antitumor immune response induction in WT1 peptide vaccine-treated patients.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Glioblastoma/inmunología , Glioblastoma/mortalidad , Inmunoglobulina G/inmunología , Péptidos/inmunología , Proteínas WT1/inmunología , Adulto , Anciano , Biomarcadores , Vacunas contra el Cáncer/administración & dosificación , Línea Celular Tumoral , Terapia Combinada , Ensayo de Inmunoadsorción Enzimática , Femenino , Glioblastoma/terapia , Antígeno HLA-A24/inmunología , Humanos , Inmunoglobulina G/sangre , Inmunoterapia , Masculino , Persona de Mediana Edad , Péptidos/administración & dosificación , Pronóstico , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Resultado del Tratamiento , Vacunación , Proteínas WT1/química , Adulto Joven
9.
Mol Carcinog ; 55(12): 2001-2009, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26713860

RESUMEN

In our previous study, we showed that miR-125a directly targeted a WT1 oncogene, which was overexpressed in leukemia and various kinds of solid tumors including lung, breast, gastric, and colon cancers, and brain tumors and was deeply involved in leukemogenesis and tumorigenesis and that miR-125a knockout mice overexpressed WT1 and developed myeloproliferative disease. It had been also reported that miR-125a is downregulated in leukemia and various types of solid tumors such as lung cancers, suggesting its tumor suppressor function. Therefore, it is important to elucidate what is target(s) of miR-125a for understandings of such functions although few target genes for it are known. In the present study, Zbtb7a oncogene was identified as a potential target for miR-125a by gene expression profiling in miR-125a knockout mice combined with bioinformatics target prediction. EGFP-3'UTR reporter assay showed that miR-125a suppressed Zbtb7a expression through its direct binding to the Zbtb7a-3'UTR. Zbtb7a knockdown by siRNA suppressed cell proliferation and induced G1 cell cycle arrest and apoptosis in lung cancer cells. Furthermore, miR-125a expression showed a negative correlation with Zbtb7a expression in non-small cell lung cancer tissues. The present study showed for the first time that Zbtb7a was a direct target for miR-125a and was involved in cell cycle progression and apoptosis of lung cancer cells. These results also demonstrated that deregulation of miR-125a-Zbtb7a signaling was associated with the development and progression of lung cancer. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Factores de Transcripción/genética , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones Noqueados , Proto-Oncogenes Mas
10.
Cancer Immunol Immunother ; 64(7): 791-804, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25835542

RESUMEN

Wilms' tumor gene 1 (WT1) protein is a promising tumor-associated antigen for cancer immunotherapy. We have been performing WT1 peptide vaccination with good clinical responses in over 750 patients with leukemia or solid cancers. In this study, we generated single-cell gene-expression profiles of the effector memory (EM) subset of WT1-specific cytotoxic T lymphocytes (CTLs) in peripheral blood of nine acute myeloid leukemia patients treated with WT1 peptide vaccine, in order to discriminate responders (WT1 mRNA levels in peripheral blood decreased to undetectable levels, decreased but stayed at abnormal levels, were stable at undetectable levels, or remained unchanged from the initial abnormal levels more than 6 months after WT1 vaccination) from non-responders (leukemic blast cells and/or WT1 mRNA levels increased relative to the initial state within 6 months of WT1 vaccination) prior to WT1 vaccination. Cluster and principal component analyses performed using 83 genes did not discriminate between responders and non-responders prior to WT1 vaccination. However, these analyses revealed that EM subset of WT1-specific CTLs could be divided into two groups: the "activated" and "quiescent" states; in responders, EM subset of the CTLs shifted to the "quiescent" state, whereas in non-responders, those shifted to the "activated" state following WT1 vaccination. These results demonstrate for the first time the existence of two distinct EM states, each of which was characteristic of responders or non-responders, of WT1-specific CTLs in AML patients, and raises the possibility of using advanced gene-expression profile analysis to clearly discriminate between responders and non-responders prior to WT1 vaccination.


Asunto(s)
Antígenos de Neoplasias/inmunología , Memoria Inmunológica/inmunología , Leucemia Mieloide Aguda/inmunología , Linfocitos T Citotóxicos/inmunología , Proteínas WT1/inmunología , Adulto , Anciano , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoterapia/métodos , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , ARN Mensajero/sangre , ARN Mensajero/genética , Linfocitos T Citotóxicos/citología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéutico , Proteínas WT1/genética
11.
Cancer Immunol Immunother ; 64(6): 707-16, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25772149

RESUMEN

To investigate the safety of combined Wilms tumor 1 peptide vaccination and temozolomide treatment of glioblastoma, a phase I clinical trial was designed. Seven patients with histological diagnosis of glioblastoma underwent concurrent radiotherapy and temozolomide therapy. Patients first received Wilms tumor 1 peptide vaccination 1 week after the end of combined concurrent radio/temozolomide therapy, and administration was continued once per week for 7 weeks. Temozolomide maintenance was started and performed for up to 24 cycles, and the observation period for safety encompassed 6 weeks from the first administration of maintenance temozolomide. All patients showed good tolerability during the observation period. Skin disorders, such as grade 1/2 injection-site reactions, were observed in all seven patients. Although grade 3 lymphocytopenia potentially due to concurrent radio/temozolomide therapy was observed in five patients (71.4 %), no other grade 3/4 hematological or neurological toxicities were observed. No autoimmune reactions were observed. All patients are still alive, and six are on Wilms tumor 1 peptide vaccination without progression, yielding a progression-free survival from histological diagnosis of 5.2-49.1 months. Wilms tumor 1 peptide vaccination was stopped in one patient after 12 injections by the patient's request. The safety profile of the combined Wilms tumor 1 peptide vaccination and temozolomide therapy approach for treating glioblastoma was confirmed.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/administración & dosificación , Dacarbazina/análogos & derivados , Glioblastoma/terapia , Proteínas WT1/administración & dosificación , Proteínas WT1/inmunología , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Estudios de Cohortes , Terapia Combinada , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Progresión de la Enfermedad , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Humanos , Masculino , Persona de Mediana Edad , Temozolomida , Proteínas WT1/efectos adversos
13.
Cancer Immunol Immunother ; 62(4): 801-10, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23275045

RESUMEN

Th17 plays important roles in the pathogenesis of various inflammatory and autoimmune diseases. Although the importance of Th17 in tumor immunity has also been suggested, precise roles of tumor-associated antigen-specific Th17 still remain poorly understood, especially in humans. We previously identified WT1332, a 16-mer helper epitope derived from tumor-associated antigen Wilms' tumor gene 1 (WT1) product, and WT1332-specific Th1 clones were established. In the present study, WT1-specific Th17 clones were established by the stimulation of peripheral blood mononuclear cells with the WT1332 helper peptide under human Th17-polarizing conditions. The WT1-specific Th17 clone exhibited the helper function for proliferation of conventional CD4(+) T cells in the antigenic stimulation-specific manner. This is the first report of establishment of functional Th17 clones with both antigen (WT1332) specificity and antigen-specific helper activity. Th17 clones established here and the method to establish antigen-specific Th17 clones should be a useful tool to further analyze the roles of human Th17 in tumor immunity.


Asunto(s)
Epítopos de Linfocito T/inmunología , Células Th17/inmunología , Proteínas WT1/inmunología , Células Clonales , Antígenos HLA-DP/inmunología , Cadenas beta de HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Humanos , Interleucina-17/biosíntesis , Interleucina-17/inmunología , Células Th17/citología
14.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672344

RESUMEN

No standard treatment has been established for most rare cancers. Here, we report a clinical trial of a biweekly WT1 tri-peptide-based vaccine for recurrent or advanced rare cancers. Due to the insufficient number of patients available for a traditional clinical trial, the trial was designed for rare cancers expressing shared target molecule WT1. The recruitment criteria included WT1-expressing tumors as well as HLA-A*24:02 or 02:01. The primary endpoints were immunoglobulin G (IgG) antibody (Ab) production against the WT1-235 cytotoxic T lymphocyte (CTL) epitope and delayed-type hypersensitivity (DTH) skin reactions to targeted WT1 CTL epitopes. The secondary endpoints were safety and clinical efficacy. Forty-five patients received WT1 Trio, and 25 (55.6%) completed the 3-month protocol treatment. WT1-235 IgG Ab was positive in 88.0% of patients treated with WT1 Trio at 3 months, significantly higher than 62.5% of the weekly WT1-235 CTL peptide vaccine. The DTH positivity rate in WT1 Trio was 62.9%, which was not significantly different from 60.7% in the WT1-235 CTL peptide vaccine. The WT1 Trio safety was confirmed without severe treatment-related adverse events, except grade 3 myasthenia gravis-like symptoms observed in a patient with thymic cancer. Fifteen (33.3%) patients achieved stable disease after 3 months of treatment. In conclusion, the biweekly WT1 Trio vaccine containing the WT1-332 helper T lymphocyte peptide induced more robust immune responses targeting WT1 than the weekly WT1-235 CTL peptide vaccine. Therefore, WT1-targeted immunotherapy may be a potential therapeutic strategy for rare cancers.

15.
Cancer Sci ; 103(3): 408-14, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22126448

RESUMEN

Wilms' tumor gene 1 (WT1) protein is a promising tumor-associated antigen. In patients with WT1-expressing malignancies, WT1-specific CTLs are spontaneously induced as a result of an immune response to the WT1 protein. In the present study, we performed single cell-level comparative analysis of T cell receptor ß-chain variable region (TCR-BV) gene families of a total of 750 spontaneously induced WT1(126) peptide (amino acids 126-134, WT1(126))-specific CTLs in both HLA-A*0201(+) patients with solid tumors and healthy donors (HDs). This is the first report of direct usage analysis of 24 kinds of TCR-BV gene families of WT1(126)-specific CTLs at the single cell level. Usage analysis with single-cell RT-PCR of TCR-BV gene families of individual FACS-sorted WT1(126) tetramer(+) CD8(+) T cells showed, for the first time, that: (i) BVs 3, 6, 7, 20, 27, and 28 were commonly biased in patients and HDs; (ii) BVs 2, 11, and 15 were biased only in patients; and (iii) BVs 4, 5, 9, and 19 were biased only in HDs. However, statistical analysis of similarity of individual usage frequencies of 24 kinds of TCR-BV gene families between patients and HDs indicated that the usage frequencies of TCR-BV gene families in patients reflected those in HDs. These results should provide us with a novel insight for a better understanding of WT1-specific immune responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Neoplasias/genética , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Adolescente , Adulto , Separación Celular , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Citometría de Flujo , Genes del Tumor de Wilms , Antígeno HLA-A2/genética , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
16.
Front Immunol ; 13: 935465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844620

RESUMEN

Memory T cells play an essential role in infectious and tumor immunity. Vitamin A metabolites such as retinoic acid are immune modulators, but the role of vitamin A metabolism in memory T-cell differentiation is unclear. In this study, we identified retinol dehydrogenase 10 (Rdh10), which metabolizes vitamin A to retinal (RAL), as a key molecule for regulating T cell differentiation. T cell-specific Rdh10 deficiency enhanced memory T-cell formation through blocking RAL production in infection model. Epigenetic profiling revealed that retinoic acid receptor (RAR) signaling activated by vitamin A metabolites induced comprehensive epigenetic repression of memory T cell-associated genes, including TCF7, thereby promoting effector T-cell differentiation. Importantly, memory T cells generated by Rdh deficiency and blocking RAR signaling elicited potent anti-tumor responses in adoptive T-cell transfer setting. Thus, T cell differentiation is regulated by vitamin A metabolism and its signaling, which should be novel targets for memory T cell-based cancer immunotherapy.


Asunto(s)
Neoplasias , Vitamina A , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Inmunoterapia , Células T de Memoria , Neoplasias/terapia , Tretinoina/farmacología , Vitamina A/metabolismo
17.
J Immunother ; 45(1): 56-66, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874330

RESUMEN

The HLA-A*24:02-restricted peptide vaccine targeting Wilms' tumor 1 (WT1) (WT1 vaccine) is a promising therapeutic strategy for ovarian cancer; however, its efficacy varies among patients. In this study, we analyzed WT1-specific immune responses in patients with advanced or recurrent ovarian cancer that was refractory to standard chemotherapies and their associations with clinical outcomes. In 25 patients, the WT1 vaccine was administered subcutaneously weekly for 3 months and biweekly thereafter until disease progression or severe adverse events. We assessed Wilms' tumor 1-specific cytotoxic T lymphocytes (WT1-CTLs) and Wilms' tumor 1 peptide-specific immunoglobulin G (WT1235-IgG). After vaccination, the percentage of tetramer high-avidity population of WT1-CTLs among CD8+ T lymphocytes (%tet-hi WT1-CTL) and the WT1235-IgG titer increased significantly, although the values were extremely low or below the limit of detection before vaccination (%tet-hi WT1-CTL: 0.003%-0.103%.; WT1235-IgG: <0.05-0.077 U/mL). Patients who had %tet-hi WT1-CTL of ≥0.25% (n=6) or WT1235-IgG of ≥0.10 U/mL (n=12) had a significantly longer progression-free survival than those of patients in the other groups. In addition, an increase in WT1235-IgG corresponded to a significantly longer progression-free survival (P=0.0496). In patients with systemic inflammation, as evidenced by elevated C-reactive protein levels, the induction of tet-hi WT1-CTL or WT1235-IgG was insufficient. Decreased serum albumin levels, multiple tumor lesions, poor performance status, and excess ascites negatively influenced the clinical effectiveness of the WT1 vaccine. In conclusion, the WT1 vaccine induced antigen-specific cellular and humoral immunity in patients with refractory ovarian cancer. Both %tet-hi WT1-CTL and WT1235-IgG levels are prognostic markers for the WT1 vaccine.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Renales , Neoplasias Ováricas , Humanos , Inmunidad Humoral , Recurrencia Local de Neoplasia , Neoplasias Ováricas/terapia , Péptidos , Linfocitos T Citotóxicos , Vacunas de Subunidad , Proteínas WT1
18.
Oncol Lett ; 23(2): 65, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35069874

RESUMEN

The Wilms' tumor gene WT1 is highly expressed in various malignancies and may be a common target antigen for cancer immunotherapy. In our group, peptide-based cancer vaccines targeting WT1 CTL epitopes were developed as an immunotherapy for these malignancies. In the present study, WT1 epitope-specific immune responses were analyzed in 31 patients with advanced sarcoma with human leukocyte antigen-A*24:02- and WT1-expressing tumors who received the WT1-235 peptide vaccine as monotherapy. The serum levels of IgG and IgM antibodies against the target epitope WT1-235 and the non-target epitopes WT1-332 and WT1-271 were measured using ELISA. IgM antibodies against WT1-235, WT1-332 and WT1-271 were detected in three (9.6%), four (12.9%) and 20 patients (64.5%), respectively, prior to vaccine administration, indicating immune recognition of the WT1 antigen prior to administering the vaccine. Of 15 patients who had completed the 3-month treatment protocol, WT1-235 IgG was positive in five (33.3%) patients. An enzyme-linked immunospot assay revealed that WT1-235 epitope-specific IL-10 production/secretion in peripheral blood mononuclear cells declined in the first month of vaccine administration in all three patients with positivity for WT1-235 IgM at the start of the vaccine. Furthermore, positivity for both WT1-235 and WT1-271 IgM antibodies at the start of treatment was associated with unfavorable tumor control at 3 months after vaccine administration. These results suggested that WT1 epitope-specific IgG and IgM antibodies may be utilized as immune-monitoring markers for WT1 peptide cancer vaccine immunotherapy. The trials were entered in the University hospital Medical Information Network (UMIN) Clinical Trials Registry (https://www.umin.ac.jp/ctr; no. UMIN000002001 on May 24, 2009 and no. UMIN000015997 on December 20, 2014).

19.
Sci Transl Med ; 14(632): eaax7706, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35171652

RESUMEN

Cancer-specific cell surface antigens are ideal therapeutic targets for monoclonal antibody (mAb)-based therapy. Here, we report that multiple myeloma (MM), an incurable hematological malignancy, can be specifically targeted by an mAb that recognizes a ubiquitously present protein, CD98 heavy chain (hc) (also known as SLC3A2). We screened more than 10,000 mAb clones raised against MM cells and identified R8H283, an mAb that bound MM cells but not normal hematopoietic or nonhematopoietic cells. R8H283 specifically recognized CD98hc. R8H283 did not react with monomers of CD98hc; instead, it bound CD98hc in heterodimers with a CD98 light chain (CD98lc), a complex that functions as an amino acid transporter. CD98 heterodimers were abundant on MM cells and took up amino acids for constitutive production of immunoglobulin. Although CD98 heterodimers were also present on normal leukocytes, R8H283 did not react with them. The glycoforms of CD98hc present on normal leukocytes were distinct from those present on MM cells, which may explain the lack of R8H283 reactivity to normal leukocytes. R8H283 exerted anti-MM effects without damaging normal hematopoietic cells. These findings suggested that R8H283 is a candidate for mAb-based therapies for MM. In addition, our findings showed that a cancer-specific conformational epitope in a ubiquitous protein, which cannot be identified by transcriptome or proteome analyses, can be found by extensive screening of primary human tumor samples.


Asunto(s)
Anticuerpos Monoclonales , Mieloma Múltiple , Anticuerpos Monoclonales/uso terapéutico , Humanos
20.
Diagnostics (Basel) ; 11(6)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198874

RESUMEN

Assessment of tumor response during treatment is one of the most important purposes of imaging. Before the appearance of immunotherapy, response evaluation criteria in solid tumors (RECIST) and positron emission tomography response criteria in solid tumors (PERCIST) were, respectively, the established morphologic and metabolic response criteria, and cessation of treatment was recommended when progressive disease was detected according to these criteria. However, various types of immunotherapy have been developed over the past 20 years, which show novel false positive findings on images, as well as distinct response patterns from conventional therapies. Antitumor immune response itself causes 18F-fluorodeoxyglucose (FDG) uptake in tumor sites, known as "flare phenomenon", so that positron emission tomography using FDG can no longer accurately identify remaining tumors. Furthermore, tumors often initially increase, followed by stability or decrease resulting from immunotherapy, which is called "pseudoprogression", so that progressive disease cannot be confirmed by computed tomography or magnetic resonance imaging at a single time point. As a result, neither RECIST nor PERCIST can accurately predict the response to immunotherapy, and therefore several new response criteria fixed for immunotherapy have been proposed. However, these criteria are still controversial, and also require months for response confirmation. The establishment of optimal response criteria and the development of new imaging technologies other than FDG are therefore urgently needed. In this review, we summarize the false positive images and the revision of response criteria for each immunotherapy, in order to avoid discontinuation of a truly effective immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA