Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 73(7): 1076-1086, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38670631

RESUMEN

BACKGROUND AND AIMS: Eosinophilic oesophagitis (EoE) is characterised by symptoms of esophageal dysfunction and oesinophil tissue infiltration. The EoE Diagnostic Panel (EDP) can distinguish between active and non-active EoE using a set of 77 genes. Recently, the existence of distinct EoE variants featuring symptoms similar to EoE, such as oesophageal dysfunction but lacking eosinophil infiltration, had been determined. METHODS: We used oesophageal biopsies from patients with histologically active (n=10) and non-active EoE (n=9) as well as from healthy oesophageal controls (n=5) participating in the Swiss Eosinophilic Esophagitis Cohort Study (SEECS) and analysed the gene expression profile in these biopsies by total RNA-sequencing (RNA-seq). Moreover, we employed the publicly accessible RNA-seq dataset (series GSE148381) as reported by Greuter et al, encompassing a comprehensive genomic profile of patients presenting with EoE variants. RESULTS: A novel, diagnostic gene expression panel that can effectively distinguish patients with histologically active conventional EoE from patients with EoE in histological remission and control individuals, and from three newly discovered EoE variants was identified. Histologically Active EoE Diagnostic Panel (HAEDP) consists of 53 genes that were identified based on differential expression between histologically active EoE, histological remission and controls (p≤0.05). By combining the HAEDP with EDP, we expanded our knowledge about factors that may contribute to the inflammation in EoE and improved our understanding of the underlying mechanisms of the disease. Conversely, we suggested a compact group of genes common to both HAEDP and EDP to create a reliable diagnostic tool that might enhance the accuracy of EoE diagnosis. CONCLUSION: We identified a novel set of 53 dysregulated genes that are closely associated with the histological inflammatory activity of EoE. In combination with EDP, our new panel might be a valuable tool for the accurate diagnosis of patients with EoE as well as for monitoring their disease course.


Asunto(s)
Esofagitis Eosinofílica , Transcriptoma , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Esofagitis Eosinofílica/diagnóstico , Humanos , Femenino , Masculino , Adulto , Biopsia , Persona de Mediana Edad , Adolescente , Esófago/patología , Perfilación de la Expresión Génica/métodos , Estudios de Casos y Controles , Adulto Joven
2.
Gut ; 72(6): 1101-1114, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36191962

RESUMEN

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial condition driven by genetic and environmental risk factors. A genetic variation in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with autoimmune disorders while protecting from the IBD subtype Crohn's disease. Mice expressing the murine orthologous PTPN22-R619W variant are protected from intestinal inflammation in the model of acute dextran sodium sulfate (DSS)-induced colitis. We previously identified food-grade titanium dioxide (TiO2, E171) as a neglected IBD risk factor. Here, we investigate the interplay of the PTPN22 variant and TiO2-mediated effects during IBD pathogenesis. DESIGN: Acute DSS colitis was induced in wild-type and PTPN22 variant mice (PTPN22-R619W) and animals were treated with TiO2 nanoparticles during colitis induction. Disease-triggering mechanisms were investigated using bulk and single-cell RNA sequencing. RESULTS: In mice, administration of TiO2 nanoparticles abrogated the protective effect of the variant, rendering PTPN22-R619W mice susceptible to DSS colitis. In early disease, cytotoxic CD8+ T-cells were found to be reduced in the lamina propria of PTPN22-R619W mice, an effect reversed by TiO2 administration. Normalisation of T-cell populations correlated with increased Ifng expression and, at a later stage of disease, the promoted prevalence of proinflammatory macrophages that triggered severe intestinal inflammation. CONCLUSION: Our findings indicate that the consumption of TiO2 nanoparticles might have adverse effects on the gastrointestinal health of individuals carrying the PTPN22 variant. This demonstrates that environmental factors interact with genetic risk variants and can reverse a protective mechanism into a disease-promoting effect.


Asunto(s)
Colitis , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Nanopartículas , Ratones , Animales , Enfermedad de Crohn/genética , Enfermedad de Crohn/complicaciones , Linfocitos T CD8-positivos/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colitis/prevención & control , Inflamación/complicaciones , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética
3.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834303

RESUMEN

G-protein-coupled receptors (GPRs), including pro-inflammatory ovarian cancer GPR1 (OGR1/GPR68) and anti-inflammatory T cell death-associated gene 8 (TDAG8/GPR65), are involved in pH sensing and linked to inflammatory bowel disease (IBD). OGR1 and TDAG8 show opposite effects. To determine which effect is predominant or physiologically more relevant, we deleted both receptors in models of intestinal inflammation. Combined Ogr1 and Tdag8 deficiency was assessed in spontaneous and acute murine colitis models. Disease severity was assessed using clinical scores. Colon samples were analyzed using quantitative polymerase chain reaction (qPCR) and flow cytometry (FACS). In acute colitis, Ogr1-deficient mice showed significantly decreased clinical scores compared with wildtype (WT) mice, while Tdag8-deficient mice and double knockout (KO) mice presented similar scores to WT. In Il-10-spontaneous colitis, Ogr1-deficient mice presented significantly decreased, and Tdag8-deficient mice had increased inflammation. In the Il10-/- × Ogr1-/- × Tdag8-/- triple KO mice, inflammation was significantly decreased compared with Tdag8-/-. Absence of Ogr1 reduced pro-inflammatory cytokines in Tdag8-deficient mice. Tdag8-/- had significantly more IFNγ+ T-lymphocytes and IL-23 T-helper cells in the colon compared with WT. The absence of OGR1 significantly alleviates the intestinal damage mediated by the lack of functional TDAG8. Both OGR1 and TDAG8 represent potential new targets for therapeutic intervention.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Receptores Acoplados a Proteínas G , Animales , Ratones , Enfermedades Inflamatorias del Intestino/genética , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Modelos Animales de Enfermedad
4.
BMC Plant Biol ; 15: 183, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194497

RESUMEN

BACKGROUND: Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. RESULTS: A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. CONCLUSION: Transgenic wheat plants had improved resistance to Sitophilus granarius.


Asunto(s)
Proteínas Aviares/genética , Avidina/genética , Control Biológico de Vectores , Triticum/fisiología , Gorgojos , Animales , Proteínas Aviares/metabolismo , Avidina/metabolismo , Expresión Génica , Control de Insectos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Triticum/genética
5.
Front Microbiol ; 15: 1412765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919500

RESUMEN

Commensal intestinal bacteria shape our microbiome and have decisive roles in preserving host metabolic and immune homeostasis. They conspicuously impact disease development and progression, including amyloid-beta (Aß) and alpha (α)-synuclein pathology in neurodegenerative diseases, conveying the importance of the brain-gut-microbiome axis in such conditions. However, little is known about the longitudinal microbiome landscape and its potential clinical implications in other protein misfolding disorders, such as prion disease. We investigated the microbiome architecture throughout prion disease course in mice. Fecal specimens were assessed by 16S ribosomal RNA sequencing. We report a temporal microbiome signature in prion disease and uncovered alterations in Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, and Muribaculaceae family members in this disease. Moreover, we determined the enrichment of Bilophila, a microorganism connected to cognitive impairment, long before the clinical manifestation of disease symptoms. Based on temporal microbial abundances, several associated metabolic pathways and resulting metabolites, including short-chain fatty acids, were linked to the disease. We propose that neuroinflammatory processes relate to perturbations of the intestinal microbiome and metabolic state by an interorgan brain-gut crosstalk. Furthermore, we describe biomarkers possibly suitable for early disease diagnostics and anti-prion therapy monitoring. While our study is confined to prion disease, our discoveries might be of equivalent relevance in other proteinopathies and central nervous system pathologies.

6.
Cell Mol Gastroenterol Hepatol ; 15(3): 717-739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36516930

RESUMEN

BACKGROUND & AIMS: Glycoprotein (GP)96 is an endoplasmic reticulum-resident master chaperone for cell surface receptors including the Wnt co-receptors low-density lipoprotein-receptor-related protein 5/6. Intestinal epithelial cell (IEC)-specific deletion of Gp96 is embryonically lethal. However, the role of GP96 in adult intestinal tissue and especially within the intestinal stem cell (ISC) niche is unknown. Here, we investigated how GP96 loss interferes with intestinal homeostasis by compromising viability, proliferation, and differentiation of IECs. METHODS: Tamoxifen was used to induce Cre-mediated deletion of Gp96 in GP96-VillincreERT2 (Cre recombinase-Estrogen-Receptor Transgene 2) mice and intestinal organoids. With H&E and immunofluorescence staining we assessed alterations in intestinal morphology and the presence and localization of IEC types. Real-time polymerase chain reaction and Western blot analysis were performed to explore the molecular mechanisms underlying the severe phenotype of Gp96 KO mice and organoids. RESULTS: IEC-specific deletion of Gp96 in adult mice resulted in a rapid degeneration of the stem cell niche, followed by complete eradication of the epithelial layer and death within a few days. These effects were owing to severe defects in ISC renewal and premature ISC differentiation, which resulted from defective Wnt and Notch signaling. Furthermore, depletion of GP96 led to massive induction of endoplasmic reticulum stress. Although effects on ISC renewal and adequate differentiation were partly reversed upon activation of Wnt/Notch signaling, viability could not be restored, indicating that reduced viability was mediated by other mechanisms. CONCLUSIONS: Our work shows that GP96 plays a fundamental role in regulating ISC fate and epithelial regeneration and therefore is indispensable for maintaining intestinal epithelial homeostasis.


Asunto(s)
Células Epiteliales , Intestinos , Glicoproteínas de Membrana , Animales , Ratones , Proliferación Celular , Células Epiteliales/metabolismo , Glicoproteínas/metabolismo , Intestinos/citología , Vía de Señalización Wnt/genética , Glicoproteínas de Membrana/metabolismo
7.
J Crohns Colitis ; 17(9): 1489-1503, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36995738

RESUMEN

BACKGROUND AND AIMS: Exacerbated immune activation, intestinal dysbiosis and a disrupted intestinal barrier are common features among inflammatory bowel disease [IBD] patients. The polyamine spermidine, which is naturally present in all living organisms, is an integral component of the human diet, and exerts beneficial effects in human diseases. Here, we investigated whether spermidine treatment ameliorates intestinal inflammation and offers therapeutic potential for IBD treatment. METHODS: We assessed the effect of oral spermidine administration on colitis severity in the T cell transfer colitis model in Rag2-/- mice by endoscopy, histology and analysis of markers of molecular inflammation. The effects on the intestinal microbiome were determined by 16S rDNA sequencing of mouse faeces. The impact on intestinal barrier integrity was evaluated in co-cultures of patient-derived macrophages with intestinal epithelial cells. RESULTS: Spermidine administration protected mice from intestinal inflammation in a dose-dependent manner. While T helper cell subsets remained unaffected, spermidine promoted anti-inflammatory macrophages and prevented the microbiome shift from Firmicutes and Bacteroides to Proteobacteria, maintaining a healthy gut microbiome. Consistent with spermidine as a potent activator of the anti-inflammatory molecule protein tyrosine phosphatase non-receptor type 2 [PTPN2], its colitis-protective effect was dependent on PTPN2 in intestinal epithelial cells and in myeloid cells. The loss of PTPN2 in epithelial and myeloid cells, but not in T cells, abrogated the barrier-protective, anti-inflammatory effect of spermidine and prevented the anti-inflammatory polarization of macrophages. CONCLUSION: Spermidine reduces intestinal inflammation by promoting anti-inflammatory macrophages, maintaining a healthy microbiome and preserving epithelial barrier integrity in a PTPN2-dependent manner.

8.
Stem Cell Rev Rep ; 18(4): 1309-1321, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038103

RESUMEN

Intestinal stem cells (ISC) are characterized by their ability to continuously self-renew and differentiate into various functionally distinct intestinal epithelial cell types. Impaired stem cell proliferation and differentiation can cause severe dysfunction of the gastrointestinal tract and lead to the development of several clinical disorders. Animal mouse models provide a valuable platform to study ISC function, disease mechanisms, and the intestinal epithelium's regenerative capacity upon tissue damage. However, advanced in vitro systems that are more relevant to human physiology are needed to understand better the diverse disease-triggering factors and the heterogeneity in clinical manifestations. Intestinal biopsies from patients might serve as potent starting material for such "gut-in-a-dish" approaches. While many promising tools for intestinal tissue processing, in vitro expansion, and downstream analysis have been developed in recent years, a comprehensive guide with recommendations to successfully launch or improve intestinal stem cell culture is missing. In this review, we present a selection of currently established methods, highlight recent publications and discuss the potential and limitations of those methodological approaches to facilitate and support the future design of novel and more personalized therapeutic options.


Asunto(s)
Mucosa Intestinal , Organoides , Animales , Diferenciación Celular , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Ratones , Células Madre
9.
Animals (Basel) ; 12(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36139237

RESUMEN

Human studies show that in addition to skin barrier and immune cell dysfunction, both the cutaneous and the gut microbiota can influence the pathogenesis of atopic diseases. There is currently no data on the gut-skin axis in allergic canines. Therefore, the aim of this study was to assess the bacterial diversity and composition of the gut microbiome in dogs with atopic dermatitis (AD). Stool samples from adult beagle dogs (n = 3) with spontaneous AD and a healthy control group (n = 4) were collected at Days 0 and 30. After the first sampling, allergic dogs were orally dosed on a daily basis with oclacitinib for 30 days, and then re-sampled. Sequencing of the V3-V4 region of the 16S rRNA gene was performed on the Illumina MiSeq platform and the data were analyzed using QIIME2. The atopic dogs had a significantly lower gut microbiota alpha-diversity than healthy dogs (p = 0.033). In healthy dogs, a higher abundance of the families Lachnospiraceae (p = 0.0006), Anaerovoracaceae (p = 0.006) and Oscillospiraceae (p = 0.021) and genera Lachnospira (p = 0.022), Ruminococcustorques group (p = 0.0001), Fusobacterium (p = 0.022) and Fecalibacterium (p = 0.045) was seen, when compared to allergic dogs. The abundance of Conchiformibius (p = 0.01), Catenibacterium spp. (p = 0.007), Ruminococcus gnavus group (p = 0.0574) and Megamonas (p = 0.0102) were higher in allergic dogs. The differences in alpha-diversity and on the compositional level remained the same after 1 month, adding to the robustness of the data. Additionally, we could also show that a 4-week treatment course with oclacitinib was not associated with changes in the gut microbiota diversity and composition in atopic dogs. This study suggests that alterations in the gut microbiota diversity and composition may be associated with canine AD. Large-scale studies preferably associated to a multi-omics approach and interventions targeting the gut microbiota are needed to confirm these results.

10.
Cells ; 11(14)2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35883643

RESUMEN

Lipid emulsions are crucial for life-saving total parenteral nutrition (TPN). Their composition provides a high amount of essential fatty acids and calories for millions of patients with serious diseases. Nevertheless, several TPN-mediated side-effects have been reported in over 90% of patients. This project aimed to investigate the effect of a high amount of ω3 fatty acids (Omegaven®) emulsion vs. a high amount of ω6 fatty acids (Intralipid®) emulsions on the endothelial barrier function. EA.hy926 cell line was cultured and incubated with 0.01, 0.1, and 1 mM lipid emulsions. The influence of these lipid emulsions on the barrier function was assessed using ECIS technology, immunofluorescent microscopy, viability measurements by flow cytometry, multiplex cytokines analysis, and qRT-PCR. BODIPY staining confirmed the uptake of fatty acids by endothelial cells. ECIS measurements demonstrated that a high concentration of Omegaven® prevents barrier formation and impairs the barrier function by inducing cell detachment. Moreover, the expression of VE-cadherin and F-actin formation showed a reorganization of the cell structure within 2 h of 1 mM Omegaven® addition. Interestingly, the study's findings contradict previous studies and revealed that Omegaven® at high concentration, but not Intralipid, induces cell detachments, impairing endothelial cells' barrier function. In summary, our studies shed new light on the effect of lipid emulsions on the endothelium.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos , Emulsiones/farmacología , Células Endoteliales/metabolismo , Endotelio/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado , Humanos , Triglicéridos
11.
BMJ Open ; 12(4): e061421, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35437256

RESUMEN

INTRODUCTION: The human microbiota, the community of micro-organisms in different cavities, has been increasingly linked with inflammatory and neoplastic diseases. While investigation into the gut microbiome has been robust, the urinary microbiome has only recently been described. Investigation into the relationship between bladder cancer (BC) and the bladder and the intestinal microbiome may elucidate a pathophysiological relationship between the two. The bladder or the intestinal microbiome or the interplay between both may also act as a non-invasive biomarker for tumour behaviour. While these associations have not yet been fully investigated, urologists have been manipulating the bladder microbiome for treatment of BC for more than 40 years, treating high grade non-muscle invasive BC (NMIBC) with intravesical BCG immunotherapy. Neither the association between the microbiome sampled directly from bladder tissue and the response to BCG-therapy nor the association between response to BCG-therapy with the faecal microbiome has been studied until now. A prognostic tool prior to initiation of BCG-therapy is still needed. METHODS AND ANALYSIS: In patients with NMIBC bladder samples will be collected during surgery (bladder microbiome assessment), faecal samples (microbiome assessment), instrumented urine and blood samples (biobank) will also be taken. We will analyse the microbial community by 16S rDNA gene amplicon sequencing. The difference in alpha diversity (diversity of species within each sample) and beta diversity (change in species diversity) between BCG-candidates will be assessed. Subgroup analysis will be performed which will lead to the development of a clinical prediction model estimating risk of BCG-response. ETHICS AND DISSEMINATION: The study has been approved by the Cantonal Ethics Committee Zurich (2021-01783) and it is being conducted in accordance with the Declaration of Helsinki and Good Clinical Practice. Study results will be disseminated through peer-reviewed journals and national and international scientific conferences. TRIAL REGISTRATION NUMBER: NCT05204199.


Asunto(s)
Microbiota , Neoplasias de la Vejiga Urinaria , Adyuvantes Inmunológicos , Administración Intravesical , Vacuna BCG/uso terapéutico , Femenino , Humanos , Masculino , Modelos Estadísticos , Estudios Observacionales como Asunto , Pronóstico , Neoplasias de la Vejiga Urinaria/patología
12.
NanoImpact ; 25: 100374, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559880

RESUMEN

Plastic pollution is a major global challenge of our times, baring a potential threat for the environment and the human health. The increasing abundance of nanoplastic (NP) and microplastic (MP) particles in the human diet might negatively affect human health since they - particularly in patients suffering from inflammatory bowel disease (IBD) - might surpass the intestinal barrier. To investigate whether ingested plastic particles cross the intestinal epithelium and promote bowel inflammation, mice were supplemented with NP or MP polystyrene (PS) particles for 24 or 12 weeks before inducing acute or chronic dextran sodium sulfate (DSS) colitis with continuous plastic administration. Although ingested PS particles accumulated in the small intestine and organs distant from the gastrointestinal tract, PS ingestion did not affect intestinal health nor did it promote colitis severity. Although the lack of colitis-promoting effects of small PS particles might be a relief for IBD patients, potential accumulative effects of ingested plastic particles on the gastrointestinal health cannot be excluded.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Colitis/inducido químicamente , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Microplásticos , Plásticos , Poliestirenos
13.
J Immunother Cancer ; 10(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35131862

RESUMEN

BACKGROUND: Integrin αvß6 is a heterodimeric cell surface protein whose cellular expression is determined by the availability of the integrin ß6 subunit (ITGB6). It is expressed at very low levels in most organs during tissue homeostasis but shows highly upregulated expression during the process of tumorigenesis in many cancers of epithelial origin. Notably, enhanced expression of integrin αvß6 is associated with aggressive disease and poor prognosis in numerous carcinoma entities. Integrin αvß6 is one of the major physiological activators of transforming growth factor-ß (TGF-ß), which has been shown to inhibit the antitumor T-cell response and cause resistance to immunotherapy in mouse models of colorectal and mammary cancer. In this study, we investigated the effect of ITGB6 expression and antibody-mediated integrin αvß6 inhibition on the tumor immune response in colorectal cancer. METHODS: Using orthotopic and heterotopic tumor cell injection, we assessed the effect of ITGB6 on tumor growth and tumor immune response in wild type mice, mice with defective TGF-ß signaling, and mice treated with anti-integrin αvß6 antibodies. To examine the effect of ITGB6 in human colorectal cancer, we analyzed RNAseq data from the colon adenocarcinoma dataset of The Cancer Genome Atlas (TCGA-COAD). RESULTS: We demonstrate that expression of ITGB6 is an immune evasion strategy in colorectal cancer, causing inhibition of the antitumor immune response and resistance to immune checkpoint blockade therapy by activating latent TGF-ß. Antibody-mediated inhibition of integrin αvß6 sparked a potent cytotoxic T-cell response and overcame resistance to programmed cell death protein 1 (PD-1) blockade therapy in ITGB6 expressing tumors, provoking a drastic increase in anti-PD-1 treatment efficacy. Further, we show that the majority of tumors in patients with colorectal cancer express sufficient ITGB6 to provoke inhibition of the cytotoxic T-cell response, indicating that most patients could benefit from integrin αvß6 blockade therapy. CONCLUSIONS: These findings propose inhibition of integrin αvß6 as a promising new therapy for colorectal cancer, which blocks tumor-promoting TGF-ß activation, prevents tumor exclusion of cytotoxic T-cells and enhances the efficacy of immune checkpoint blockade therapy.


Asunto(s)
Antígenos de Neoplasias/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Integrinas/uso terapéutico , Animales , Antígenos de Neoplasias/farmacología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones , Microambiente Tumoral
14.
Cells ; 10(12)2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34944097

RESUMEN

Background: The single nucleotide polymorphism (SNP) rs1042058 within the gene locus encoding tumor progression locus 2 (TPL2) has been recently identified as a risk gene for inflammatory bowel disease (IBD). TPL2 has been shown to regulate pro-inflammatory signaling and cytokine secretion, while inhibition of TPL2 decreases intestinal inflammation in vivo. However, the clinical and molecular implications of this disease-associated TPL2 variation in IBD patients have not yet been studied. Methods: We analyzed the impact of the IBD-associated TPL2 variation using clinical data of 2145 genotyped patients from the Swiss IBD Cohort Study (SIBDCS). Furthermore, we assessed the molecular consequences of the TPL2 variation in ulcerative colitis (UC) and Crohn's disease (CD) patients by real-time PCR and multiplex ELISA of colon biopsies or serum, respectively. Results: We found that presence of the SNP rs1042058 within the TPL2 gene locus results in significantly higher numbers of CD patients suffering from peripheral arthritis. In contrast, UC patients carrying this variant feature a lower risk for intestinal surgery. On a molecular level, the presence of the rs1042058 (GG) IBD-risk polymorphism in TPL2 was associated with decreased mRNA levels of IL-10 in CD patients and decreased levels of IL-18 in the intestine of UC patients. Conclusions: Our data suggest that the presence of the IBD-associated TPL2 variation might indicate a more severe disease course in CD patients. These results reveal a potential therapeutic target and demonstrate the relevance of the IBD-associated TPL2 SNP as a predictive biomarker in IBD.


Asunto(s)
Progresión de la Enfermedad , Sitios Genéticos , Predisposición Genética a la Enfermedad , Enfermedades Inflamatorias del Intestino/genética , Quinasas Quinasa Quinasa PAM/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas/genética , Adolescente , Adulto , Alelos , Artritis/sangre , Artritis/genética , Colitis Ulcerosa/sangre , Colitis Ulcerosa/genética , Colitis Ulcerosa/cirugía , Enfermedad de Crohn/sangre , Enfermedad de Crohn/genética , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Análisis Factorial , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/patología , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo , Adulto Joven
15.
J Crohns Colitis ; 15(9): 1596-1601, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631789

RESUMEN

BACKGROUND AND AIMS: Antibodies targeting tumor necrosis factor-alpha [TNF-alpha] are a mainstay in the treatment of inflammatory bowel disease. However, they fail to demonstrate efficacy in a considerable proportion of patients. On the other hand, glycosylation of antibodies might influence not only their immunogenicity but also their structure and function. We investigated whether specific glycosylation patterns of the Fc-fragment would affect the immunogenicity of anti-TNF-alpha antibody in monocyte-derived dendritic cells. METHODS: The effect of a specific Fc-glycosylation pattern on antibody uptake by monocyte-derived dendritic cells [mo-DCs] and how this process shapes the immunologic profile of mo-DCs was investigated. Three N-glycoforms of the anti-TNF-alpha antibody adalimumab, that differed in the content of fucose or sialic acid, were tested: [1] mock treated Humira, abbreviated 'Fuc-G0', where the N-glycan mainly consist of fucose and N-acetylglucosamine [GlcNAc], without sialic acid; [2] 'Fuc-G2S1/G2S2' with fucose and alpha 2,6 linked sialic acid; and [3] 'G2S1/G2S2' with alpha 2,6 linked sialic acid, without fucose. RESULTS: Our data demonstrated that neither fucosylation nor sialylation of anti-TNF-Abs [Fuc-G0, FucG2S1/G2S2, G2S1/G2S2] influence their uptake by mo-DCs. Additionally, none of the differentially glycosylated antibodies altered CD80, CD86, CD273, CD274 levels on mo-DCs stimulated in with lipopolysaccharide in the presence of antibodies. Next, we evaluated the levels of cytokines in the supernatant of mo-DCs stimulated with lipopolysaccharide in the presence of Fuc-G0, Fuc-G2S1/G2S2 or G2S1/G2S2-glycosylated anti-TNF antibodies. Only IL-2 and IL-17 levels were downregulated, and IL-5 production was upregulated by uptake of Fuc-G0 antibodies, as compared to control without antibodies. CONCLUSIONS: The specific modification in the Fc-glycosylation pattern of anti-TNF-alpha Abs does not affect their immunogenicity under the tested conditions. As this study was limited to mo-DCs, further investigation is required to clarify whether Ab uptake into mo-DCs might change the immunological profile of T- and B-cells, in order to ultimately reduce the formation of anti-drug antibodies and to improve the patient care.


Asunto(s)
Adalimumab/farmacología , Células Dendríticas/efectos de los fármacos , Fucosa/metabolismo , Fragmentos Fc de Inmunoglobulinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Inhibidores del Factor de Necrosis Tumoral/farmacología , Adalimumab/química , Técnicas de Cultivo de Célula , Glicosilación , Humanos , Monocitos , Inhibidores del Factor de Necrosis Tumoral/química
16.
Mol Nutr Food Res ; 65(5): e2000412, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32729969

RESUMEN

SCOPE: The aim of this study is to test whether the choice of the lipid emulsion in total parenteral nutrition (TPN), that is, n-3 fatty acid-based Omegaven versus n-6 fatty acid-based Intralipid, determines inflammation in the liver, the incretin profile, and insulin resistance. METHODS AND RESULTS: Jugular vein catheters (JVC) are placed in C57BL/6 mice and used for TPN for 7 days. Mice are randomized into a saline group (saline infusion with oral chow), an Intralipid group (IL-TPN, no chow), an Omegaven group (OV-TPN, no chow), or a chow only group (without JVC). Both TPN elicite higher abundance of lipopolysaccharide binding protein in the liver, but only IL-TPN increases interleukin-6 and interferon-γ, while OV-TPN reduces interleukin-4, monocyte chemoattractant protein-1, and interleukin-1α. Insulin plasma concentrations are higher in both TPN, while glucagon and glucagon-like peptide-1 (GLP-1) were higher in IL-TPN. Gluconeogenesis is increased in IL-TPN and the nuclear profile of key metabolic transcription factors shows a liver-protective phenotype in OV-TPN. OV-TPN increases insulin sensitivity in the liver and skeletal muscle. CONCLUSION: OV-TPN as opposed to IL-TPN mitigates inflammation in the liver and reduces the negative metabolic effects of hyperinsulinemia and hyperglucagonemia by "re-sensitizing" the liver and skeletal muscle to insulin.


Asunto(s)
Gastritis/etiología , Hepatitis/etiología , Insulina/metabolismo , Lípidos/administración & dosificación , Nutrición Parenteral Total/métodos , Animales , Emulsiones/administración & dosificación , Emulsiones/química , Emulsiones/farmacología , Ácidos Grasos Omega-6/farmacología , Aceites de Pescado/farmacología , Incretinas/metabolismo , Insulina/sangre , Resistencia a la Insulina , Interferón gamma/metabolismo , Interleucina-6/metabolismo , Lípidos/química , Síndromes de Malabsorción/etiología , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Nutrición Parenteral Total/efectos adversos , Fosfolípidos/administración & dosificación , Fosfolípidos/farmacología , Aceite de Soja/administración & dosificación , Aceite de Soja/farmacología , Triglicéridos/farmacología
17.
Cell Host Microbe ; 29(10): 1573-1588.e7, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34453895

RESUMEN

Despite overall success, T cell checkpoint inhibitors for cancer treatment are still only efficient in a minority of patients. Recently, intestinal microbiota was found to critically modulate anti-cancer immunity and therapy response. Here, we identify Clostridiales members of the gut microbiota associated with a lower tumor burden in mouse models of colorectal cancer (CRC). Interestingly, these commensal species are also significantly reduced in CRC patients compared with healthy controls. Oral application of a mix of four Clostridiales strains (CC4) in mice prevented and even successfully treated CRC as stand-alone therapy. This effect depended on intratumoral infiltration and activation of CD8+ T cells. Single application of Roseburia intestinalis or Anaerostipes caccae was even more effective than CC4. In a direct comparison, the CC4 mix supplementation outperformed anti-PD-1 therapy in mouse models of CRC and melanoma. Our findings provide a strong preclinical foundation for exploring gut bacteria as novel stand-alone therapy against solid tumors.


Asunto(s)
Terapia Biológica , Clostridiales/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Microbioma Gastrointestinal , Animales , Linfocitos T CD8-positivos/inmunología , Clostridiales/fisiología , Neoplasias Colorrectales/microbiología , Humanos , Inmunidad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Simbiosis
18.
Cells ; 9(2)2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102433

RESUMEN

Disruption of epithelial junctional complex (EJC), especially tight junctions (TJ), resulting in increased intestinal permeability, is supposed to activate the enhanced immune response to gluten and to induce the development of celiac disease (CD). This study is aimed to present the role of EJC in CD pathogenesis. To analyze differentially expressed genes the next-generation mRNA sequencing data from CD326+ epithelial cells isolated from non-celiac and celiac patients were involved. Ultrastructural studies with morphometry of EJC were done in potential CD, newly recognized active CD, and non-celiac controls. The transcriptional analysis suggested disturbances of epithelium and the most significant gene ontology enriched terms in epithelial cells from CD patients related to the plasma membrane, extracellular exome, extracellular region, and extracellular space. Ultrastructural analyses showed significantly tighter TJ, anomalies in desmosomes, dilatations of intercellular space, and shorter microvilli in potential and active CD compared to controls. Enterocytes of fetal-like type and significantly wider adherence junctions were observed only in active CD. In conclusion, the results do not support the hypothesis that an increased passage of gluten peptides by unsealing TJ precedes CD development. However, increased intestinal permeability due to abnormality of epithelium might play a role in CD onset.


Asunto(s)
Enfermedad Celíaca/fisiopatología , Células Epiteliales/ultraestructura , Uniones Estrechas/ultraestructura , Adolescente , Niño , Femenino , Humanos , Masculino
19.
Plant Methods ; 13: 41, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28539970

RESUMEN

BACKGROUND: The main aim of this study was to improve fungal resistance in bread wheat via transgenesis. Transgenic wheat plants harboring barley chitinase (chi26) gene, driven by maize ubi promoter, were obtained using biolistic bombardment, whereas the herbicide resistance gene, bar, driven by the CaMV 35S promoter was used as a selectable marker. RESULTS: Molecular analysis confirmed the integration, copy number, and the level of expression of the chi26 gene in four independent transgenic events. Chitinase enzyme activity was detected using a standard enzymatic assay. The expression levels of chi26 gene in the different transgenic lines, compared to their respective controls, were determined using qRT-PCR. The transgene was silenced in some transgenic families across generations. Gene silencing in the present study seemed to be random and irreversible. The homozygous transgenic plants of T4, T5, T6, T8, and T9 generations were tested in the field for five growing seasons to evaluate their resistance against rusts and powdery mildew. The results indicated high chitinase activity at T0 and high transgene expression levels in few transgenic families. This resulted in high resistance against wheat rusts and powdery mildew under field conditions. It was indicated by proximate and chemical analyses that one of the transgenic families and the non-transgenic line were substantially equivalent. CONCLUSION: Transgenic wheat with barley chi26 was found to be resistant even after five generations under artificial fungal infection conditions. One transgenic line was proved to be substantially equivalent as compared to the non-transgenic control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA