Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33891876

RESUMEN

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Autofagia Mediada por Chaperones/fisiología , Neuronas/metabolismo , Proteostasis , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Quinasa de la Caseína I/genética , Autofagia Mediada por Chaperones/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Neuronas/patología , Proteoma
2.
Brain Behav Immun ; 111: 277-291, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37100211

RESUMEN

Dysregulated inflammation within the central nervous system (CNS) contributes to neuropathology in infectious, autoimmune, and neurodegenerative disease. With the exception of microglia, major histocompatibility complex (MHC) proteins are virtually undetectable in the mature, healthy central nervous system (CNS). Neurons have generally been considered incapable of antigen presentation, and although interferon gamma (IFN-γ) can elicit neuronal MHC class I (MHC-I) expression and antigen presentation in vitro, it has been unclear whether similar responses occur in vivo. Here we directly injected IFN-γ into the ventral midbrain of mature mice and analyzed gene expression profiles of specific CNS cell types. We found that IFN-γ upregulated MHC-I and associated mRNAs in ventral midbrain microglia, astrocytes, oligodendrocytes, and GABAergic, glutamatergic, and dopaminergic neurons. The core set of IFN-γ-induced genes and their response kinetics were similar in neurons and glia, but with a lower amplitude of expression in neurons. A diverse repertoire of genes was upregulated in glia, particularly microglia, which were the only cells to undergo cellular proliferation and express MHC classII (MHC-II) and associated genes. To determine if neurons respond directly via cell-autonomous IFN-γ receptor (IFNGR) signaling, we produced mutant mice with a deletion of the IFN-γ-binding domain of IFNGR1 in dopaminergic neurons, which resulted in a complete loss of dopaminergic neuronal responses to IFN-γ. Our results demonstrate that IFN-γ induces neuronal IFNGR signaling and upregulation of MHC-I and related genes in vivo, although the expression level is low compared to oligodendrocytes, astrocytes, and microglia.


Asunto(s)
Interferón gamma , Enfermedades Neurodegenerativas , Ratones , Animales , Interferón gamma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sistema Nervioso Central/metabolismo , Astrocitos/metabolismo , Mesencéfalo/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(51): 32701-32710, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33273122

RESUMEN

α-Synuclein is expressed at high levels at presynaptic terminals, but defining its role in the regulation of neurotransmission under physiologically relevant conditions has proven elusive. We report that, in vivo, α-synuclein is responsible for the facilitation of dopamine release triggered by action potential bursts separated by short intervals (seconds) and a depression of release with longer intervals between bursts (minutes). These forms of presynaptic plasticity appear to be independent of the presence of ß- and γ-synucleins or effects on presynaptic calcium and are consistent with a role for synucleins in the enhancement of synaptic vesicle fusion and turnover. These results indicate that the presynaptic effects of α-synuclein depend on specific patterns of neuronal activity.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo , Anestésicos por Inhalación/farmacología , Animales , Señalización del Calcio , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Isoflurano/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotransmisores/metabolismo , Sustancia Negra/citología , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/genética , gamma-Sinucleína/metabolismo
4.
Neurobiol Dis ; 175: 105920, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36351559

RESUMEN

Dopamine metabolism, alpha-synuclein pathology, and iron homeostasis have all been implicated as potential contributors to the unique vulnerability of substantia nigra dopaminergic neurons which preferentially decline in Parkinson's disease and some rare neurodegenerative disorders with shared pathological features. However, the mechanisms contributing to disease progression and resulting in dopaminergic neuron loss in the substantia nigra are still not completely understood. Increasing evidence demonstrates that disrupted dopamine, alpha-synuclein, and/or iron pathways, when combined with the unique morphological, physiological, and metabolic features of this neuron population, may culminate in weakened resilience to multiple stressors. This review analyzes the involvement of each of these pathways in dopamine neuron physiology and function, and discusses how disrupted interplay of dopamine, alpha-synuclein, and iron pathways may synergize to promote pathology and drive the unique vulnerability to disease states. We suggest that elucidating the interactions of dopamine with iron and alpha-synuclein, and the role of dopamine metabolism in driving pathogenic phenotypes will be critical for developing therapeutics to prevent progression in diseases that show degeneration of nigral dopamine neurons such as Parkinson's disease and the rare family of disorders known as Neurodegeneration with Brain Iron Accumulation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Hierro/metabolismo , Sustancia Negra/metabolismo , Encéfalo/metabolismo
5.
Mol Psychiatry ; 25(9): 2070-2085, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626912

RESUMEN

Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic ß-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic ß-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in ß-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in ß-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which ß-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, ß-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.


Asunto(s)
Dopamina , Células Secretoras de Insulina , Animales , Dopamina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
6.
Hum Mol Genet ; 26(22): 4406-4415, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973165

RESUMEN

Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Descarboxilasas de Aminoácido-L-Aromático/deficiencia , Mutación Missense , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Animales , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Femenino , Terapia Genética , Humanos , Levodopa/metabolismo , Masculino , Ratones , Neostriado/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Serotonina/metabolismo , Sustancia Negra/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(51): 14835-14840, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930324

RESUMEN

Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.


Asunto(s)
Dopamina/fisiología , Hipocampo/fisiología , Memoria , Aprendizaje Espacial , Animales , Axones/fisiología , Conducta Animal , Locus Coeruleus/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Optogenética , Transmisión Sináptica/fisiología
8.
Angew Chem Int Ed Engl ; 58(20): 6512-6527, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30536578

RESUMEN

Dopamine (DA) is the most important catecholamine in the brain, as it is the most abundant and the precursor of other neurotransmitters. Degeneration of nigrostriatal neurons of substantia nigra pars compacta in Parkinson's disease represents the best-studied link between DA neurotransmission and neuropathology. Catecholamines are reactive molecules that are handled through complex control and transport systems. Under normal conditions, small amounts of cytosolic DA are converted to neuromelanin in a stepwise process involving melanization of peptides and proteins. However, excessive cytosolic or extraneuronal DA can give rise to nonselective protein modifications. These reactions involve DA oxidation to quinone species and depend on the presence of redox-active transition metal ions such as iron and copper. Other oxidized DA metabolites likely participate in post-translational protein modification. Thus, protein-quinone modification is a heterogeneous process involving multiple DA-derived residues that produce structural and conformational changes of proteins and can lead to aggregation and inactivation of the modified proteins.


Asunto(s)
Dopamina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Quinonas/uso terapéutico , Dopamina/farmacología , Humanos , Estrés Oxidativo , Quinonas/farmacología
9.
Proc Natl Acad Sci U S A ; 111(34): E3544-52, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25122673

RESUMEN

Calcineurin (CN) is a highly conserved Ca(2+)-calmodulin (CaM)-dependent phosphatase that senses Ca(2+) concentrations and transduces that information into cellular responses. Ca(2+) homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca(2+), thereby activating a CaM-CN cascade that engages substrates that result in toxicity. Surprisingly, complete inhibition of CN also results in toxicity. Limiting the availability of CaM shifts CN's spectrum of substrates toward protective pathways. Modulating CN or CN's substrates with highly selective genetic and pharmacological tools (FK506) does the same. FK506 crosses the blood brain barrier, is well tolerated in humans, and is active in neurons and glia. Thus, a tunable response to CN, which has been conserved for a billion years, can be targeted to rebalance the phosphatase's activities from toxic toward beneficial substrates. These findings have immediate therapeutic implications for synucleinopathies.


Asunto(s)
Calcineurina/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad , Animales , Calcineurina/genética , Inhibidores de la Calcineurina , Señalización del Calcio , Calmodulina/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Ratones , Ratones Transgénicos , Modelos Neurológicos , Factores de Transcripción NFATC/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/toxicidad , Tacrolimus/farmacología , alfa-Sinucleína/genética
10.
J Biol Chem ; 290(11): 6799-809, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25596531

RESUMEN

1-Methyl-4-phenylpyridinium (MPP(+)), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP(+) exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP(+) exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP(+) concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP(+) depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP(+)-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP(+)-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP(+)-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP(+) on neuronal DA homeostasis and neurotoxicity.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Neurotoxinas/toxicidad , Animales , Células Cultivadas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Homeostasis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
11.
Mov Disord ; 30(1): 45-53, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450307

RESUMEN

Levodopa replacement therapy has long provided the most effective treatment for Parkinson's disease (PD). We review how this dopamine (DA) precursor enhances dopaminergic transmission by providing a greater sphere of neurotransmitter influence as a result of the confluence of increased quantal size and decreased DA reuptake, as well as loading DA as a false transmitter into surviving serotonin neuron synaptic vesicles. We further review literature on how presynaptic dysregulation of DA release after l-dopa might trigger dyskinesias in PD patients.


Asunto(s)
Dopaminérgicos/efectos adversos , Discinesia Inducida por Medicamentos , Levodopa/efectos adversos , Neuronas/citología , Terminales Presinápticos/efectos de los fármacos , Animales , Dopamina/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/patología , Humanos , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Terminales Presinápticos/metabolismo
12.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352367

RESUMEN

Autism Spectrum Disorders (ASD) consist of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine dopamine neurotransmission in a mouse model of ASD characterized by elevated expression of the eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal dopamine release. The loss of normal dopamine neurotransmission is due to a defective nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings reveal an intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility, provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions.

13.
Adv Sci (Weinh) ; 11(21): e2400847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549185

RESUMEN

Understanding the impact of long-term opioid exposure on the embryonic brain is critical due to the surging number of pregnant mothers with opioid dependency. However, this has been limited by human brain inaccessibility and cross-species differences in animal models. Here, a human midbrain model is established that uses hiPSC-derived midbrain organoids to assess cell-type-specific responses to acute and chronic fentanyl treatment and fentanyl withdrawal. Single-cell mRNA sequencing of 25,510 cells from organoids in different treatment groups reveals that chronic fentanyl treatment arrests neuronal subtype specification during early midbrain development and alters synaptic activity and neuron projection. In contrast, acute fentanyl treatment increases dopamine release but does not significantly alter gene expression related to cell lineage development. These results provide the first examination of the effects of opioid exposure on human midbrain development at the single-cell level.


Asunto(s)
Analgésicos Opioides , Mesencéfalo , Organoides , Humanos , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Analgésicos Opioides/farmacología , Fentanilo/farmacología , Neurogénesis/efectos de los fármacos
14.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562777

RESUMEN

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

15.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496679

RESUMEN

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

16.
Methods Mol Biol ; 2565: 239-260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36205899

RESUMEN

Both patch amperometry (PA) and intracellular patch electrochemistry (IPE) take advantage of a recording configuration where an electrochemical detector-carbon fiber electrode (CFE)-is housed inside a patch pipette. PA, which is employed in cell-attached or excised inside-out patch clamp configuration, offers high-resolution patch capacitance measurements with simultaneous amperometric detection of catecholamines released during exocytosis. The method provides precise information on single-vesicle size and quantal content, fusion pore conductance, and permeability of the pore for catecholamines. IPE, on the other hand, measures cytosolic catecholamines that diffuse into the patch pipette following membrane rupture to achieve the whole-cell configuration. In amperometric mode, IPE detects total catechols, whereas in cyclic voltammetric mode, it provides more specific information on the nature of the detected molecules and may selectively quantify catecholamines, providing a direct approach to determine cytosolic concentrations of catecholaminergic transmitters and their metabolites. Here, we provide detailed instructions on setting up PA and IPE, performing experiments and analyzing the data.


Asunto(s)
Células Cromafines , Fibra de Carbono , Catecolaminas/metabolismo , Catecoles , Células Cromafines/metabolismo , Electroquímica/métodos , Exocitosis
17.
PNAS Nexus ; 2(3): pgad044, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909827

RESUMEN

Dopamine neurotransmission in the striatum is central to many normal and disease functions. Ventral midbrain dopamine neurons exhibit ongoing tonic firing that produces low extrasynaptic levels of dopamine below the detection of conventional extrasynaptic cyclic voltammetry (∼10-20 nanomolar), with superimposed bursts that can saturate the dopamine uptake transporter and produce transient micromolar concentrations. The bursts are known to lead to marked presynaptic plasticity via multiple mechanisms, but analysis methods for these kinetic parameters are limited. To provide a deeper understanding of the mechanics of the modulation of dopamine neurotransmission by physiological, genetic, and pharmacological means, we present three computational models of dopamine release with different levels of spatiotemporal complexity to analyze in vivo fast-scan cyclic voltammetry recordings from the dorsal striatum of mice. The models accurately fit to cyclic voltammetry data and provide estimates of presynaptic dopamine facilitation/depression kinetics and dopamine transporter reuptake kinetics, and we used the models to analyze the role of synuclein proteins in neurotransmission. The models' results support recent findings linking the presynaptic protein α-synuclein to the short-term facilitation and long-term depression of dopamine release, as well as reveal a new role for ß-synuclein and/or γ-synuclein in the long-term regulation of dopamine reuptake.

18.
Nat Commun ; 14(1): 4726, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563104

RESUMEN

The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Masculino , Ratones , Animales , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Encéfalo/metabolismo , Fenotipo
19.
NPJ Parkinsons Dis ; 9(1): 4, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646701

RESUMEN

In Parkinson's disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity. Neuronal activity triggers a sustained increase of pS129 in cultured neurons (200% within 4 h). In accord, brain pS129 is elevated in environmentally enriched mice exhibiting enhanced long-term potentiation. Activity-dependent α-synuclein phosphorylation is S129-specific, reversible, confers no cytotoxicity, and accumulates at synapsin-containing presynaptic boutons. Mechanistically, our findings are consistent with a model in which neuronal stimulation enhances Plk2 kinase activity via a calcium/calcineurin pathway to counteract PP2A phosphatase activity for efficient phosphorylation of membrane-bound α-synuclein. Patch clamping of rat SNCA-/- neurons expressing exogenous wild-type or phospho-incompetent (S129A) α-synuclein suggests that pS129 fine-tunes the balance between excitatory and inhibitory neuronal currents. Consistently, our novel S129A knock-in (S129AKI) mice exhibit impaired hippocampal plasticity. The discovery of a key physiological function for pS129 has implications for understanding the role of α-synuclein in neurotransmission and adds nuance to the interpretation of pS129 as a synucleinopathy biomarker.

20.
Elife ; 112022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35098924

RESUMEN

Dopaminergic neurons modulate neural circuits and behaviors via dopamine (DA) release from expansive, long range axonal projections. The elaborate cytoarchitecture of these neurons is embedded within complex brain tissue, making it difficult to access the neuronal proteome using conventional methods. Here, we demonstrate APEX2 proximity labeling within genetically targeted neurons in the mouse brain, enabling subcellular proteomics with cell-type specificity. By combining APEX2 biotinylation with mass spectrometry, we mapped the somatodendritic and axonal proteomes of midbrain dopaminergic neurons. Our dataset reveals the proteomic architecture underlying proteostasis, axonal metabolism, and neurotransmission in these neurons. We find that most proteins encoded by DA neuron-enriched genes are localized within striatal dopaminergic axons, including ion channels with previously undescribed axonal localization. These proteomic datasets provide a resource for neuronal cell biology, and this approach can be readily adapted for study of other neural cell types.


Asunto(s)
Encéfalo/citología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Neuronas Dopaminérgicas/metabolismo , Endonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Proteómica , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/genética , Femenino , Masculino , Ratones , Enzimas Multifuncionales/genética , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA