Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FEBS J ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011799

RESUMEN

Upregulation of nuclear factor κB (NFκB) signaling is a hallmark of aging and a major cause of age-related chronic inflammation. However, its effect on cellular senescence remains unclear. Here, we show that alteration of NFκB nuclear dynamics from oscillatory to sustained by depleting a negative feedback regulator of NFκB pathway, NFκB inhibitor alpha (IκBα), in the presence of tumor necrosis factor α (TNFα) promotes cellular senescence. Sustained NFκB activity enhanced inflammatory gene expression through increased NFκB-DNA binding and slowed the cell cycle. IκBα protein was decreased under replicative or oxidative stress in vitro. Furthermore, a decrease in IκBα protein and an increase in DNA-NFκB binding at the transcription start sites of age-associated genes in aged mouse hearts suggested that nuclear NFκB dynamics may play a critical role in the progression of aging. Our study suggests that nuclear NFκB dynamics-dependent epigenetic changes regulated over time in a living system, possibly through a decrease in IκBα, enhance the expression of inflammatory genes to advance the cells to a senescent state.

2.
iScience ; 27(6): 109840, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38779479

RESUMEN

Quantification of cytokine secretion has facilitated advances in the field of immunology, yet the dynamic and varied secretion profiles of individual cells, particularly those obtained from limited human samples, remain obscure. Herein, we introduce a technology for quantitative live-cell imaging of secretion activity (qLCI-S) that enables high-throughput and dual-color monitoring of secretion activity at the single-cell level over several days, followed by transcriptome analysis of individual cells based on their phenotype. The efficacy of qLCI-S was demonstrated by visualizing the characteristic temporal pattern of cytokine secretion of group 2 innate lymphoid cells, which constitute less than 0.01% of human peripheral blood mononuclear cells, and by revealing minor subpopulations with enhanced cytokine production. The underlying mechanism of this feature was linked to the gene expression of stimuli receptors. This technology paves the way for exploring gene expression signatures linked to the spatiotemporal dynamic nature of various secretory functions.

3.
Nat Commun ; 14(1): 8120, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097562

RESUMEN

Pulmonary fibrosis (PF), a condition characterized by inflammation and collagen deposition in the alveolar interstitium, causes dyspnea and fatal outcomes. Although the bleomycin-induced PF mouse model has improved our understanding of exogenous factor-induced fibrosis, the mechanism governing endogenous factor-induced fibrosis remains unknown. Here, we find that Ifngr1-/-Rag2-/- mice, which lack the critical suppression factor for group 2 innate lymphoid cells (ILC2), develop PF spontaneously. The onset phase of fibrosis includes ILC2 subpopulations with a high Il1rl1 (IL-33 receptor) expression, and fibrosis does not develop in ILC-deficient or IL-33-deficient mice. Although ILC2s are normally localized near bronchioles and blood vessels, ILC2s are increased in fibrotic areas along with IL-33 positive fibroblasts during fibrosis. Co-culture analysis shows that activated-ILC2s directly induce collagen production from fibroblasts. Furthermore, increased IL1RL1 and decreased IFNGR1 expressions are confirmed in ILC2s from individuals with idiopathic PF, highlighting the applicability of Ifngr1-/-Rag2-/- mice as a mouse model for fibrosis research.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Inmunidad Innata , Interleucina-33/genética , Linfocitos , Fibrosis , Colágeno , Pulmón/patología , Ratones Endogámicos C57BL , Proteína 1 Similar al Receptor de Interleucina-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA