Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biochem ; 117(11): 2482-95, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26990292

RESUMEN

Preventive and therapeutic efficiencies of dietary sulforaphane (SFN) against human prostate cancer have been demonstrated in vivo, but the underlying mechanism(s) by which this occurs is poorly understood. Here, we show that the prostate cancer stem cell (pCSC)-like traits, such as accelerated activity of aldehyde dehydrogenase 1 (ALDH1), enrichment of CD49f+ fraction, and sphere forming efficiency, are attenuated by SFN treatment. Interestingly, the expression of c-Myc, an oncogenic transcription factor that is frequently deregulated in prostate cancer cells, was markedly suppressed by SFN both in vitro and in vivo. This is biologically relevant, because the lessening of pCSC-like phenotypes mediated by SFN was attenuated when c-Myc was overexpressed. Naturally occurring thio, sulfinyl, and sulfonyl analogs of SFN were also effective in causing suppression of c-Myc protein level. However, basal glycolysis, a basic metabolic pathway that can also be promoted by c-Myc overexpression, was not largely suppressed by SFN, implying that, in addition to c-Myc, there might be another SFN-sensitive cellular factor, which is not directly involved in basal glycolysis, but cooperates with c-Myc to sustain pCSC-like phenotypes. Our study suggests that oncogenic c-Myc is a target of SFN to prevent and eliminate the onset of human prostate cancer. J. Cell. Biochem. 117: 2482-2495, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anticarcinógenos/farmacología , Isotiocianatos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Humanos , Técnicas para Inmunoenzimas , Masculino , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfóxidos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Breast Cancer Res Treat ; 157(1): 41-54, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27097807

RESUMEN

The present study offers novel insights into the molecular circuitry of accelerated in vivo tumor growth by Notch2 knockdown in triple-negative breast cancer (TNBC) cells. Therapeutic vulnerability of Notch2-altered growth to a small molecule (withaferin A, WA) is also demonstrated. MDA-MB-231 and SUM159 cells were used for the xenograft studies. A variety of technologies were deployed to elucidate the mechanisms underlying tumor growth augmentation by Notch2 knockdown and its reversal by WA, including Fluorescence Molecular Tomography for measurement of tumor angiogenesis in live mice, Seahorse Flux analyzer for ex vivo measurement of tumor metabolism, proteomics, and Luminex-based cytokine profiling. Stable knockdown of Notch2 resulted in accelerated in vivo tumor growth in both cells reflected by tumor volume and/or latency. For example, the wet tumor weight from mice bearing Notch2 knockdown MDA-MB-231 cells was about 7.1-fold higher compared with control (P < 0.0001). Accelerated tumor growth by Notch2 knockdown was highly sensitive to inhibition by a promising steroidal lactone (WA) derived from a medicinal plant. Molecular underpinnings for tumor growth intensification by Notch2 knockdown included compensatory increase in Notch1 activation, increased cellular proliferation and/or angiogenesis, and increased plasma or tumor levels of growth stimulatory cytokines. WA administration reversed many of these effects providing explanation for its remarkable anti-cancer efficacy. Notch2 functions as a tumor growth suppressor in TNBC and WA offers a novel therapeutic strategy for restoring this function.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Receptor Notch2/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Witanólidos/administración & dosificación , Animales , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Receptor Notch1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Witanólidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Biol Chem ; 285(34): 26558-69, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20571029

RESUMEN

Phenethyl isothiocyanate (PEITC), a constituent of edible cruciferous vegetables such as watercress, not only affords significant protection against chemically induced cancer in experimental rodents but also inhibits growth of human cancer cells by causing apoptotic and autophagic cell death. However, the underlying mechanism of PEITC-induced cell death is not fully understood. Using LNCaP and PC-3 human prostate cancer cells as a model, we demonstrate that the PEITC-induced cell death is initiated by production of reactive oxygen species (ROS) resulting from inhibition of oxidative phosphorylation (OXPHOS). Exposure of LNCaP and PC-3 cells to pharmacologic concentrations of PEITC resulted in ROS production, which correlated with inhibition of complex III activity, suppression of OXPHOS, and ATP depletion. These effects were not observed in a representative normal human prostate epithelial cell line (PrEC). The ROS production by PEITC treatment was not influenced by cyclosporin A. The Rho-0 variants of LNCaP and PC-3 cells were more resistant to PEITC-mediated ROS generation, apoptotic DNA fragmentation, and collapse of mitochondrial membrane potential compared with respective wild-type cells. The PEITC treatment resulted in activation of Bax in wild-type LNCaP and PC-3 cells, but not in their respective Rho-0 variants. Furthermore, RNA interference of Bax and Bak conferred significant protection against PEITC-induced apoptosis. The Rho-0 variants of LNCaP and PC-3 cells also resisted PEITC-mediated autophagy. In conclusion, the present study provides novel insight into the molecular circuitry of PEITC-induced cell death involving ROS production due to inhibition of complex III and OXPHOS.


Asunto(s)
Isotiocianatos/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Anticarcinógenos , Muerte Celular , Línea Celular Tumoral , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Humanos , Masculino , Neoplasias de la Próstata/patología
4.
J Mol Diagn ; 20(5): 628-634, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29936258

RESUMEN

Human Genome Variation Society (HGVS) nomenclature is a de facto clinical standard for reporting DNA sequence variants. With increasing use of high-throughput sequencing, manual generation of HGVS nomenclatures for all variants is impractical and error-prone. It is therefore beneficial to include one or more HGVS generator tools in next-generation sequencing (NGS) bioinformatics pipelines to enable automated, consistent, and accurate generation of HGVS nomenclature after appropriate validation. The authors implemented an HGVS nomenclature tool, the hgvs package, by integrating it into their custom-developed NGS variant management and reporting software. Use of Docker containers provided a strategic advantage to the integration process. Clinical implementation of the hgvs package was validated using a cohort of 330 variants that appropriately represented cancer-related genes and clinically important variant types. The hgvs package was able to generate HGVS-compliant variant nomenclature (both c. and p.) for 308 of the 330 (93.3%) variants, including all those in the coding and untranslated regions, and 32 of 35 (91.4%) in the consensus splice site region. Discrepant HGVS nomenclature involved variants in the intronic (16 of 40) and consensus splice site (3 of 35) regions with repeat sequences. Overall, implementation of the hgvs package in the clinical NGS workflow improved consistency and accuracy of reporting HGVS nomenclature.


Asunto(s)
Variación Genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Terminología como Asunto , Automatización , Estudios de Cohortes , Humanos , Programas Informáticos
5.
PLoS One ; 6(6): e20914, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21698063

RESUMEN

BACKGROUND: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. METHODOLOGY/PRINCIPAL FINDINGS: We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. CONCLUSIONS/FINDINGS: Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH).


Asunto(s)
Diferenciación Celular , Metabolismo Energético , Células Madre Pluripotentes/metabolismo , Western Blotting , Línea Celular , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Células Madre Pluripotentes/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción Genética
6.
PLoS One ; 6(8): e23354, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21853114

RESUMEN

Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Especies Reactivas de Oxígeno/metabolismo , Witanólidos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Complejo III de Transporte de Electrones/metabolismo , Femenino , Humanos , Ratones , Fosforilación Oxidativa/efectos de los fármacos , Sustancias Protectoras/farmacología , Superóxido Dismutasa/metabolismo , Witanólidos/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA