Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 49(W1): W567-W572, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33963857

RESUMEN

Proteo3Dnet is a web server dedicated to the analysis of mass spectrometry interactomics experiments. Given a flat list of proteins, its aim is to organize it in terms of structural interactions to provide a clearer overview of the data. This is achieved using three means: (i) the search for interologs with resolved structure available in the protein data bank, including cross-species remote homology search, (ii) the search for possibly weaker interactions mediated through Short Linear Motifs as predicted by ELM-a unique feature of Proteo3Dnet, (iii) the search for protein-protein interactions physically validated in the BioGRID database. The server then compiles this information and returns a graph of the identified interactions and details about the different searches. The graph can be interactively explored to understand the way the core complexes identified could interact. It can also suggest undetected partners to the experimentalists, or specific cases of conditionally exclusive binding. The interest of Proteo3Dnet, previously demonstrated for the difficult cases of the proteasome and pragmin complexes data is, here, illustrated in the context of yeast precursors to the small ribosomal subunits and the smaller interactome of 14-3-3zeta frequent interactors. The Proteo3Dnet web server is accessible at http://bioserv.rpbs.univ-paris-diderot.fr/services/Proteo3Dnet/.


Asunto(s)
Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos , Proteínas 14-3-3/metabolismo , Internet , Espectrometría de Masas , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
2.
J Biol Chem ; 295(32): 11184-11194, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554804

RESUMEN

Trehalose polyphleates (TPP) are high-molecular-weight, surface-exposed glycolipids present in a broad range of nontuberculous mycobacteria. These compounds consist of a trehalose core bearing polyunsaturated fatty acyl substituents (called phleic acids) and a straight-chain fatty acid residue and share a common basic structure with trehalose-based glycolipids produced by Mycobacterium tuberculosis TPP production starts in the cytosol with the formation of a diacyltrehalose intermediate. An acyltransferase, called PE, subsequently catalyzes the transfer of phleic acids onto diacyltrehalose to form TPP, and an MmpL transporter promotes the export of TPP or its precursor across the plasma membrane. PE is predicted to be an anchored membrane protein, but its topological organization is unknown, raising questions about the subcellular localization of the final stage of TPP biosynthesis and the chemical nature of the substrates that are translocated by the MmpL transporter. Here, using genetic, biochemical, and proteomic approaches, we established that PE of Mycobacterium smegmatis is exported to the cell envelope following cleavage of its signal peptide and that this process is required for TPP biosynthesis, indicating that the last step of TPP formation occurs in the outer layers of the mycobacterial cell envelope. These results provide detailed insights into the molecular mechanisms controlling TPP formation and transport to the cell surface, enabling us to propose an updated model of the TPP biosynthetic pathway. Because the molecular mechanisms of glycolipid production are conserved among mycobacteria, these findings obtained with PE from M. smegmatis may offer clues to glycolipid formation in M. tuberculosis.


Asunto(s)
Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Trehalosa/metabolismo , Membrana Celular/metabolismo , Glucolípidos/metabolismo , Proteolisis , Fracciones Subcelulares/metabolismo
3.
Bioinformatics ; 36(10): 3148-3155, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32096818

RESUMEN

MOTIVATION: The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study. RESULTS: Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size. AVAILABILITY AND IMPLEMENTATION: Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client-server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Prolina , Proteómica , Algoritmos , Espectrometría de Masas , Programas Informáticos
4.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30700495

RESUMEN

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Asunto(s)
Espectrometría de Masas/métodos , Células Madre Mesenquimatosas/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Oxígeno/farmacología , Reproducibilidad de los Resultados
5.
J Proteome Res ; 19(7): 2807-2820, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32338910

RESUMEN

Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.


Asunto(s)
Mapas de Interacción de Proteínas , Proteómica , Biología Computacional , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo
6.
Bioinformatics ; 35(4): 679-681, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30084957

RESUMEN

SUMMARY: VisioProt-MS is designed to summarize and analyze intact protein and top-down proteomics data. It plots the molecular weights of eluting proteins as a function of their retention time, thereby allowing inspection of runs from liquid chromatography coupled to mass spectrometry (LC-MS). It also overlays MS/MS identification results. VisioProt-MS is compatible with outputs from many different top-down dedicated software. To our knowledge, this is the only open source standalone application that allows the dynamic comparison of several MS files, a prerequisite for comparative analysis of different biological conditions. With its dynamic rendering, this user-friendly web application facilitates inspection, comparison and export of publication quality 2 D maps from deconvoluted LC-MS run(s) and top-down proteomics data. AVAILABILITY AND IMPLEMENTATION: The Shiny-based web application VisioProt-MS is suitable for non-R users. It can be found at https://masstools.ipbs.fr/mstools/visioprot-ms/ and the corresponding scripts are downloadable at https://github.com/mlocardpaulet/VisioProt-MS. It is governed by the CeCILL license (http://www.cecill.info).


Asunto(s)
Proteínas/química , Proteómica , Cromatografía Liquida , Espectrometría de Masas , Programas Informáticos
7.
J Proteome Res ; 15(11): 3998-4019, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27444420

RESUMEN

The Chromosome-Centric Human Proteome Project (C-HPP) aims to identify "missing" proteins in the neXtProt knowledgebase. We present an in-depth proteomics analysis of the human sperm proteome to identify testis-enriched missing proteins. Using protein extraction procedures and LC-MS/MS analysis, we detected 235 proteins (PE2-PE4) for which no previous evidence of protein expression was annotated. Through LC-MS/MS and LC-PRM analysis, data mining, and immunohistochemistry, we confirmed the expression of 206 missing proteins (PE2-PE4) in line with current HPP guidelines (version 2.0). Parallel reaction monitoring acquisition and sythetic heavy labeled peptides targeted 36 ≪one-hit wonder≫ candidates selected based on prior peptide spectrum match assessment. 24 were validated with additional predicted and specifically targeted peptides. Evidence was found for 16 more missing proteins using immunohistochemistry on human testis sections. The expression pattern for some of these proteins was specific to the testis, and they could possibly be valuable markers with fertility assessment applications. Strong evidence was also found of four "uncertain" proteins (PE5); their status should be re-examined. We show how using a range of sample preparation techniques combined with MS-based analysis, expert knowledge, and complementary antibody-based techniques can produce data of interest to the community. All MS/MS data are available via ProteomeXchange under identifier PXD003947. In addition to contributing to the C-HPP, we hope these data will stimulate continued exploration of the sperm proteome.


Asunto(s)
Proteoma/análisis , Espermatozoides/química , Cromatografía Liquida , Minería de Datos , Bases de Datos de Proteínas , Humanos , Inmunohistoquímica , Masculino , Proteómica/métodos , Espectrometría de Masas en Tándem , Testículo/química
8.
J Proteome Res ; 14(9): 3621-34, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26132440

RESUMEN

In the framework of the C-HPP, our Franco-Swiss consortium has adopted chromosomes 2 and 14, coding for a total of 382 missing proteins (proteins for which evidence is lacking at protein level). Over the last 4 years, the French proteomics infrastructure has collected high-quality data sets from 40 human samples, including a series of rarely studied cell lines, tissue types, and sample preparations. Here we described a step-by-step strategy based on the use of bioinformatics screening and subsequent mass spectrometry (MS)-based validation to identify what were up to now missing proteins in these data sets. Screening database search results (85,326 dat files) identified 58 of the missing proteins (36 on chromosome 2 and 22 on chromosome 14) by 83 unique peptides following the latest release of neXtProt (2014-09-19). PSMs corresponding to these peptides were thoroughly examined by applying two different MS-based criteria: peptide-level false discovery rate calculation and expert PSM quality assessment. Synthetic peptides were then produced and used to generate reference MS/MS spectra. A spectral similarity score was then calculated for each pair of reference-endogenous spectra and used as a third criterion for missing protein validation. Finally, LC-SRM assays were developed to target proteotypic peptides from four of the missing proteins detected in tissue/cell samples, which were still available and for which sample preparation could be reproduced. These LC-SRM assays unambiguously detected the endogenous unique peptide for three of the proteins. For two of these, identification was confirmed by additional proteotypic peptides. We concluded that of the initial set of 58 proteins detected by the bioinformatics screen, the consecutive MS-based validation criteria led to propose the identification of 13 of these proteins (8 on chromosome 2 and 5 on chromosome 14) that passed at least two of the three MS-based criteria. Thus, a rigorous step-by-step approach combining bioinformatics screening and MS-based validation assays is particularly suitable to obtain protein-level evidence for proteins previously considered as missing. All MS/MS data have been deposited in ProteomeXchange under identifier PXD002131.


Asunto(s)
Cromosomas Humanos Par 14 , Cromosomas Humanos Par 2 , Proteínas/genética , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Cromatografía Liquida , Humanos , Datos de Secuencia Molecular , Proteínas/química
9.
Mol Cell Proteomics ; 12(8): 2293-312, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23674615

RESUMEN

In order to map the extracellular or membrane proteome associated with the vasculature and the stroma in an embryonic organism in vivo, we developed a biotinylation technique for chicken embryo and combined it with mass spectrometry and bioinformatic analysis. We also applied this procedure to implanted tumors growing on the chorioallantoic membrane or after the induction of granulation tissue. Membrane and extracellular matrix proteins were the most abundant components identified. Relative quantitative analysis revealed differential protein expression patterns in several tissues. Through a bioinformatic approach, we determined endothelial cell protein expression signatures, which allowed us to identify several proteins not yet reported to be associated with endothelial cells or the vasculature. This is the first study reported so far that applies in vivo biotinylation, in combination with robust label-free quantitative proteomics approaches and bioinformatic analysis, to an embryonic organism. It also provides the first description of the vascular and matrix proteome of the embryo that might constitute the starting point for further developments.


Asunto(s)
Proteínas Aviares/metabolismo , Embrión de Pollo/metabolismo , Membrana Corioalantoides/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Animales , Biotinilación , Línea Celular Tumoral , Membrana Corioalantoides/lesiones , Humanos , Intestino Delgado/embriología , Intestino Delgado/metabolismo , Riñón/embriología , Riñón/metabolismo , Hígado/embriología , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Proteoma
10.
Mol Cell Proteomics ; 11(8): 527-39, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22518033

RESUMEN

To perform differential studies of complex protein mixtures, strategies for reproducible and accurate quantification are needed. Here, we evaluated a quantitative proteomic workflow based on nanoLC-MS/MS analysis on an LTQ-Orbitrap-VELOS mass spectrometer and label-free quantification using the MFPaQ software. In such label-free quantitative studies, a compromise has to be found between two requirements: repeatability of sample processing and MS measurements, allowing an accurate quantification, and high proteomic coverage of the sample, allowing quantification of minor species. The latter is generally achieved through sample fractionation, which may induce experimental bias during the label-free comparison of samples processed, and analyzed independently. In this work, we wanted to evaluate the performances of MS intensity-based label-free quantification when a complex protein sample is fractionated by one-dimensional SDS-PAGE. We first tested the efficiency of the analysis without protein fractionation and could achieve quite good quantitative repeatability in single-run analysis (median coefficient of variation of 5%, 99% proteins with coefficient of variation <48%). We show that sample fractionation by one-dimensional SDS-PAGE is associated with a moderate decrease of quantitative measurement repeatability while largely improving the depth of proteomic coverage. We then applied the method for a large scale proteomic study of the human endothelial cell response to inflammatory cytokines, such as TNFα, interferon γ, and IL1ß, which allowed us to finely decipher at the proteomic level the biological pathways involved in endothelial cell response to proinflammatory cytokines.


Asunto(s)
Cromatografía Liquida/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Células Cultivadas , Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Mediadores de Inflamación/farmacología , Interferón gamma/farmacología , Interleucina-1beta/farmacología , Proteínas/análisis , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos
11.
Bioelectrochemistry ; 156: 108593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995503

RESUMEN

Low-energy electron beams (LEEB) are a safe and practical sterilization solution for in-line industrial applications, such as sterilizing medical products. However, their low dose rate induces product degradation, and the limited maximal energy prohibits high-throughput applications. To address this, we developed a low-energy 'pulsed' electron beam generator (LEPEB) and evaluated its efficacy and mechanism of action. Bacillus pumilus vegetative cells and spores were irradiated with a 250 keV LEPEB system at a 100 Hz pulse repetition frequency and a pulse duration of only 10 ns. This produced highly efficient bacterial inactivation at a rate of >6 log10, the level required for sterilization in industrial applications, with only two pulses for vegetative bacteria (20 ms) and eight pulses for spores (80 ms). LEPEB induced no morphological or structural defects, but decreased cell wall hydrophobicity in vegetative cells, which may inhibit biofilm formation. Single- and double-strand DNA breaks and pyrimidine dimer formation were also observed, likely causing cell death. Together, the unique combination of high dose rate and nanosecond delivery of LEPEB enable effective and high-throughput bacterial eradication for direct integration into production lines in a wide range of industrial applications.


Asunto(s)
Bacterias , Electrones , Esterilización
12.
Aging Cell ; : e14168, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698559

RESUMEN

Frailty is a clinical state reflecting a decrease in physiological reserve capacities, known to affect numerous biological pathways and is associated with health issues, including neurodegenerative diseases. However, how global protein expression is affected in the central nervous system in frail subject remains underexplored. In this post hoc cross-sectional biomarker analysis, we included 90 adults (52-85 years) suspected of normal pressure hydrocephalus (NPH) and presenting with markers of neurodegenerative diseases. We investigated the human proteomic profile of cerebrospinal fluid associated with frailty defined by an established cumulated frailty index (FI, average = 0.32), not enriched for neurology clinical features. Using a label-free quantitative proteomic approach, we identified and quantified 999 proteins of which 13 were positively associated with frailty. Pathway analysis with the top positively frailty-associated proteins revealed enrichment for proteins related to inflammation and immune response. Among the 60 proteins negatively associated with frailty, functional pathways enriched included neurogenesis, synaptogenesis and neuronal guidance. We constructed a frailty prediction model using ridge regression with 932 standardized proteins. Our results showed that the "proteomic model" could become an equivalent predictor of FI in order to study chronological age. This study represents the first comprehensive exploration of the proteomic profile of frailty within cerebrospinal fluid. It sheds light on the physiopathology of frailty, particularly highlighting processes of neuroinflammation and inhibition of neurogenesis. Our findings unveil a range of biological mechanisms that are dysregulated in frailty, in NPH subjects at risk of neurodegenerative impairment, offering new perspectives on frailty phenotyping and prediction.

13.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38597952

RESUMEN

Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.


Asunto(s)
Asma , Interleucina-33 , Animales , Humanos , Ratones , Alarminas , Citocinas , Inmunidad Innata , Inflamación , Interleucina-9 , Linfocitos , Proteómica
14.
Front Immunol ; 14: 1108682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122721

RESUMEN

Introduction: Narcolepsy type 1 (NT1) is a rare, chronic and disabling neurological disease causing excessive daytime sleepiness and cataplexy. NT1 is characterized pathologically by an almost complete loss of neurons producing the orexin neuropeptides in the lateral hypothalamus. Genetic and environmental factors strongly suggest the involvement of the immune system in the loss of orexin neurons. The cerebrospinal fluid (CSF), secreted locally and surrounding the central nervous system (CNS), represents an accessible window into CNS pathological processes. Methods: To gain insight into the biological and molecular changes in NT1 patients, we performed a comparative proteomics analysis of the CSF from 21 recent-onset NT1 patients and from two control groups: group 1 with somatoform disorders, and group 2 patients with hypersomnia other than NT1, to control for any potential effect of sleep disturbances on CSF composition. To achieve an optimal proteomic coverage analysis, the twelve most abundant CSF proteins were depleted, and samples were analyzed by nano-flow liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) using the latest generation of hybrid Orbitrap mass spectrometer. Results and discussion: Our study allowed the identification and quantification of up to 1943 proteins, providing a remarkably deep analysis of the CSF proteome. Interestingly, gene set enrichment analysis indicated that the complement and coagulation systems were enriched and significantly activated in NT1 patients in both cohorts analyzed. Notably, the lectin and alternative complement pathway as well as the downstream lytic membrane attack complex were congruently increased in NT1. Our data suggest that the complement dysregulation in NT1 patients can contribute to immunopathology either by directly promoting tissue damage or as part of local inflammatory responses. We therefore reveal an altered composition of the CSF proteome in NT1 patients, which points to an ongoing inflammatory process contributed, at least in part, by the complement system.


Asunto(s)
Narcolepsia , Espectrometría de Masas en Tándem , Humanos , Orexinas , Proteoma , Proteómica , Proteínas del Sistema Complemento
15.
Mol Cell Proteomics ; 9(5): 1006-21, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20093276

RESUMEN

Cerebrospinal fluid (CSF) is the biological fluid in closest contact with the brain and thus contains proteins of neural cell origin. Hence, CSF is a biochemical window into the brain and is particularly attractive for the search for biomarkers of neurological diseases. However, as in the case of other biological fluids, one of the main analytical challenges in proteomic characterization of the CSF is the very wide concentration range of proteins, largely exceeding the dynamic range of current analytical approaches. Here, we used the combinatorial peptide ligand library technology (ProteoMiner) to reduce the dynamic range of protein concentration in CSF and unmask previously undetected proteins by nano-LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. This method was first applied on a large pool of CSF from different sources with the aim to better characterize the protein content of this fluid, especially for the low abundance components. We were able to identify 1212 proteins in CSF, and among these, 745 were only detected after peptide library treatment. However, additional difficulties for clinical studies of CSF are the low protein concentration of this fluid and the low volumes typically obtained after lumbar puncture, precluding the conventional use of ProteoMiner with large volume columns for treatment of patient samples. The method has thus been optimized to be compatible with low volume samples. We could show that the treatment is still efficient with this miniaturized protocol and that the dynamic range of protein concentration is actually reduced even with small amounts of beads, leading to an increase of more than 100% of the number of identified proteins in one LC-MS/MS run. Moreover, using a dedicated bioinformatics analytical work flow, we found that the method is reproducible and applicable for label-free quantification of series of samples processed in parallel.


Asunto(s)
Proteínas del Líquido Cefalorraquídeo/análisis , Biblioteca de Péptidos , Proteómica/métodos , Cromatografía Liquida , Humanos , Ligandos , Espectrometría de Masas , Microesferas , Neurogénesis , Reproducibilidad de los Resultados , Programas Informáticos , Coloración y Etiquetado
16.
Sci Data ; 9(1): 126, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354825

RESUMEN

In the last decade, a revolution in liquid chromatography-mass spectrometry (LC-MS) based proteomics was unfolded with the introduction of dozens of novel instruments that incorporate additional data dimensions through innovative acquisition methodologies, in turn inspiring specialized data analysis pipelines. Simultaneously, a growing number of proteomics datasets have been made publicly available through data repositories such as ProteomeXchange, Zenodo and Skyline Panorama. However, developing algorithms to mine this data and assessing the performance on different platforms is currently hampered by the lack of a single benchmark experimental design. Therefore, we acquired a hybrid proteome mixture on different instrument platforms and in all currently available families of data acquisition. Here, we present a comprehensive Data-Dependent and Data-Independent Acquisition (DDA/DIA) dataset acquired using several of the most commonly used current day instrumental platforms. The dataset consists of over 700 LC-MS runs, including adequate replicates allowing robust statistics and covering over nearly 10 different data formats, including scanning quadrupole and ion mobility enabled acquisitions. Datasets are available via ProteomeXchange (PXD028735).


Asunto(s)
Benchmarking , Proteómica , Animales , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masas/métodos , Proteoma
17.
J Proteomics ; 231: 104045, 2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33189847

RESUMEN

In the context of human evolution, the study of proteins may overcome the limitation of the high degradation of ancient DNA over time to provide biomolecular information useful for the phylogenetic reconstruction of hominid taxa. In this study, we used a shotgun proteomics approach to compare the tooth proteomes of extant human and non-human primates (gorilla, chimpanzee, orangutan and baboon) in order to search for a panel of peptides able to discriminate between taxa and further help reconstructing the evolutionary relationships of fossil primates. Among the 25 proteins shared by the five genera datasets, we found a combination of peptides with sequence variations allowing to differentiate the hominid taxa in the proteins AHSG, AMBN, APOA1, BGN, C9, COL11A2, COL22A1, COL3A1, DSPP, F2, LUM, OMD, PCOLCE and SERPINA1. The phylogenetic tree confirms the placement of the samples in the appropriate genus branches. Altogether, the results provide experimental evidence that a shotgun proteomics approach on dental tissue has the potential to detect taxonomic variation, which is promising for future investigations of uncharacterized and/or fossil hominid/hominin specimens. SIGNIFICANCE: A shotgun proteomics approach on human and non-human primate teeth allowed to identify peptides with taxonomic interest, highlighting the potential for future studies on hominid fossils.


Asunto(s)
Hominidae , Diente , Animales , Humanos , Filogenia , Primates , Proteoma
18.
Commun Biol ; 4(1): 269, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649389

RESUMEN

The success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented on MHC-I molecules. We demonstrated that the splicing inhibitor isoginkgetin and its water-soluble and non-toxic derivative IP2 act at the production stage of the pioneer translation products (PTPs). We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and impairs tumor growth in vivo. IP2 action is long-lasting and dependent on the CD8+ T cell response against TAs. We observed that the antigen repertoire displayed on MHC-I molecules at the surface of MCA205 fibrosarcoma is modified upon treatment with IP2. In particular, IP2 enhances the presentation of an exon-derived epitope from the tumor suppressor nischarin. The combination of IP2 with a peptide vaccine targeting the nischarin-derived epitope showed a synergistic antitumor effect in vivo. These findings identify the spliceosome as a druggable target for the development of epitope-based immunotherapies.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Antígenos de Neoplasias/metabolismo , Antineoplásicos Fitogénicos/farmacología , Biflavonoides/farmacología , Vacunas contra el Cáncer/farmacología , Fibrosarcoma/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fibrosarcoma/inmunología , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores de Imidazolina/inmunología , Receptores de Imidazolina/metabolismo , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral
19.
Mol Cancer Ther ; 20(12): 2433-2445, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34552006

RESUMEN

The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kß, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.


Asunto(s)
Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Proteómica/métodos , Animales , Línea Celular Tumoral , Resistencia a Medicamentos , Humanos , Ratones , Neoplasias Pancreáticas/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología
20.
Sci Data ; 8(1): 311, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862403

RESUMEN

Genes are pleiotropic and getting a better knowledge of their function requires a comprehensive characterization of their mutants. Here, we generated multi-level data combining phenomic, proteomic and metabolomic acquisitions from plasma and liver tissues of two C57BL/6 N mouse models lacking the Lat (linker for activation of T cells) and the Mx2 (MX dynamin-like GTPase 2) genes, respectively. Our dataset consists of 9 assays (1 preclinical, 2 proteomics and 6 metabolomics) generated with a fully non-targeted and standardized approach. The data and processing code are publicly available in the ProMetIS R package to ensure accessibility, interoperability, and reusability. The dataset thus provides unique molecular information about the physiological role of the Lat and Mx2 genes. Furthermore, the protocols described herein can be easily extended to a larger number of individuals and tissues. Finally, this resource will be of great interest to develop new bioinformatic and biostatistic methods for multi-omics data integration.


Asunto(s)
Modelos Animales de Enfermedad , Metabolómica , Proteómica , Proteínas Adaptadoras Transductoras de Señales , Animales , Femenino , Hígado , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas de Resistencia a Mixovirus , Fenotipo , Plasma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA