Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37997921

RESUMEN

The last edition of the X-chromosome inactivation (XCI) meeting was held as an EMBO workshop in Berlin on 19-22 June 2023. The conference took place at the Harnack-haus in the Dahlem district, birthplace of the first modern research campus, where notable scientists such as Lise Meitner, Hans Krebs and, briefly, Albert Einstein conducted their research. This special edition, also accessible online, was organized by Rafael Galupa (Centre for Integrative Biology of Toulouse, France), Joost Gribnau (Erasmus MC Rotterdam, The Netherlands), Claire Rougeulle (Université Paris Cité/CNRS, Epigenetics and Cell Fate Center, Paris, France), Edda Schulz (Max Planck Institute for Molecular Genetics, Berlin, Germany) and James Turner (The Francis Crick Institute, London, UK). Originally scheduled for 2021, to commemorate the 60th anniversary of Mary Lyon's hypothesis on X-chromosome inactivation in mammals and the 30th anniversary of XIST/Xist discovery, the meeting had to be postponed because of the COVID-19 pandemic. Seven years after the latest XCI meeting in London, the enthusiasm and expectations of the community were at their highest, bringing together over 160 scientists from around the world to share and discuss their research. Eighty posters and more than 40 talks were presented at this event, in a collegial and collaborative atmosphere. A historical session and several breakout discussions were also organized, as well as the now traditional boat trip, all thanks to great organization. Here, we debrief readers on this fantastic conference.


Asunto(s)
Pandemias , ARN Largo no Codificante , Animales , Humanos , Inactivación del Cromosoma X/genética , Epigénesis Genética , Mamíferos/genética , Cromosomas , ARN Largo no Codificante/genética , Cromosoma X
2.
Cell Mol Life Sci ; 79(3): 165, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230542

RESUMEN

Eukaryotic cells divide and separate all their components after chromosome segregation by a process called cytokinesis to complete cell division. Cytokinesis is highly regulated by the recruitment of the components to the division site and through post-translational modifications such as phosphorylations. The budding yeast mitotic kinases Cdc28-Clb2, Cdc5, and Dbf2-Mob1 phosphorylate several cytokinetic proteins contributing to the regulation of cytokinesis. The PP2A-Cdc55 phosphatase regulates mitosis counteracting Cdk1- and Cdc5-dependent phosphorylation. This prompted us to propose that PP2A-Cdc55 could also be counteracting the mitotic kinases during cytokinesis. Here we show that in the absence of Cdc55, AMR contraction and the primary septum formation occur asymmetrically to one side of the bud neck supporting a role for PP2A-Cdc55 in cytokinesis regulation. In addition, by in vivo and in vitro assays, we show that PP2A-Cdc55 dephosphorylates the chitin synthase II (Chs2 in budding yeast) a component of the Ingression Progression Complexes (IPCs) involved in cytokinesis. Interestingly, the non-phosphorylable version of Chs2 rescues the asymmetric AMR contraction and the defective septa formation observed in cdc55∆ mutant cells. Therefore, timely dephosphorylation of the Chs2 by PP2A-Cdc55 is crucial for proper actomyosin ring contraction. These findings reveal a new mechanism of cytokinesis regulation by the PP2A-Cdc55 phosphatase and extend our knowledge of the involvement of multiple phosphatases during cytokinesis.


Asunto(s)
Actomiosina/metabolismo , Citocinesis/fisiología , Quitina Sintasa/metabolismo , Segregación Cromosómica/fisiología , Fosforilación/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
3.
Cell Mol Life Sci ; 76(18): 3601-3620, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30927017

RESUMEN

Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2ACdc55 phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2ACdc55 activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2ACdc55 phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2ACdc55 activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Anafase , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Mitosis , Fosfopéptidos/análisis , Fosforilación , Separasa/metabolismo , Espectrometría de Masas en Tándem
4.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31906018

RESUMEN

Protein phosphorylation is a common mechanism for the regulation of cell cycle progression. The opposing functions of cell cycle kinases and phosphatases are crucial for accurate chromosome segregation and exit from mitosis. Protein phosphatases 2A are heterotrimeric complexes that play essential roles in cell growth, proliferation, and regulation of the cell cycle. Here, we review the function of the protein phosphatase 2A family as the counteracting force for the mitotic kinases. We focus on recent findings in the regulation of mitotic exit and cytokinesis by PP2A phosphatases in S. cerevisiae and other fungal species.


Asunto(s)
Citocinesis/fisiología , Mitosis/fisiología , Proteína Fosfatasa 2/metabolismo , Levaduras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Segregación Cromosómica , Fosforilación , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Levaduras/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA