Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(10): 102419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037968

RESUMEN

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Asunto(s)
Candida albicans , Candidiasis Bucal , Receptores ErbB , Proteínas Fúngicas , Mucosa Bucal , Humanos , Candida albicans/metabolismo , Candida albicans/patogenicidad , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Candidiasis Bucal/metabolismo , Candidiasis Bucal/microbiología , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología
2.
Infect Immun ; 91(2): e0033322, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36625602

RESUMEN

The human lung is constantly exposed to Aspergillus fumigatus spores, the most prevalent worldwide cause of fungal respiratory disease. Pulmonary tissue damage is a unifying feature of Aspergillus-related diseases; however, the mechanistic basis of damage is not understood. In the lungs of susceptible hosts, A. fumigatus undergoes an obligatory morphological switch involving spore germination and hyphal growth. We modeled A. fumigatus infection in cultured A549 human pneumocytes, capturing the phosphoactivation status of five host signaling pathways, nuclear translocation and DNA binding of eight host transcription factors, and expression of nine host response proteins over six time points encompassing exposures to live fungus and the secretome thereof. The resulting data set, comprised of more than 1,000 data points, reveals that pneumocytes mount differential responses to A. fumigatus spores, hyphae, and soluble secreted products via the NF-κB, JNK, and JNK + p38 pathways, respectively. Importantly, via selective degradation of host proinflammatory (IL-6 and IL-8) cytokines and growth factors (FGF-2), fungal secreted products reorchestrate the host response to fungal challenge as well as driving multiparameter epithelial damage, culminating in cytolysis. Dysregulation of NF-κB signaling, involving sequential stimulation of canonical and noncanonical signaling, was identified as a significant feature of host damage both in vitro and in a mouse model of invasive aspergillosis. Our data demonstrate that composite tissue damage results from iterative (repeated) exposures to different fungal morphotypes and secreted products and suggest that modulation of host responses to fungal challenge might represent a unified strategy for therapeutic control of pathologically distinct types of Aspergillus-related disease.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Animales , Ratones , Humanos , FN-kappa B/metabolismo , Pulmón/microbiología , Homeostasis , Esporas Fúngicas
3.
J Periodontal Res ; 58(6): 1272-1280, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787434

RESUMEN

OBJECTIVE: The aim of this study was to investigate metabolomics markers in the saliva of patients with periodontal health, gingivitis and periodontitis. BACKGROUND: The use of metabolomics for diagnosing and monitoring periodontitis is promising. Although several metabolites have been reported to be altered by inflammation, few studies have examined metabolomics in saliva collected from patients with different periodontal phenotypes. METHODS: Saliva samples collected from a total of 63 patients were analysed by nuclear magnetic resonance (NMR) followed by ELISA for interleukin (IL)-1ß. The patient sample, well-characterised clinically, included periodontal health (n = 8), gingivitis (n = 19) and periodontitis (n = 36) cases, all non-smokers and not diabetic. RESULTS: Periodontal diagnosis (healthy/gingivitis/periodontitis) was not associated with any salivary metabolites in this exploratory study. Periodontal staging showed nominal associations with acetoin (p = .030) and citrulline (p = .047). Among other investigated variables, the use of systemic antibiotics in the previous 3 months was associated with higher values of the amino acids taurine, glycine and ornithine (p = .002, p = .05 and p = .005, respectively, at linear regression adjusted for age, gender, ethnicity, body mass index and staging). CONCLUSION: While periodontal staging was marginally associated with some salivary metabolites, other factors such as systemic antibiotic use may have a much more profound effect on the microbial metabolites in saliva. Metabolomics in periodontal disease is still an underresearched area that requires further observational studies on large cohorts of patients, aiming to obtain data to be used for clinical translation.


Asunto(s)
Gingivitis , Enfermedades Periodontales , Periodontitis , Humanos , Saliva/química , Periodontitis/metabolismo , Gingivitis/metabolismo , Enfermedades Periodontales/metabolismo , Biomarcadores/metabolismo
4.
Cell Microbiol ; 23(10): e13371, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34085369

RESUMEN

Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.


Asunto(s)
Candidiasis , Proteínas Fúngicas , Candida albicans , Células Epiteliales , Humanos , Necrosis
5.
Nature ; 532(7597): 64-8, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27027296

RESUMEN

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Citotoxinas/metabolismo , Proteínas Fúngicas/toxicidad , Micotoxinas/toxicidad , Factores de Virulencia/metabolismo , Calcio/metabolismo , Candida albicans/inmunología , Candidiasis/metabolismo , Candidiasis/microbiología , Candidiasis/patología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citotoxinas/genética , Citotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Micotoxinas/genética , Micotoxinas/metabolismo , Transducción de Señal/efectos de los fármacos , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/toxicidad
6.
Semin Cell Dev Biol ; 89: 58-70, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29501618

RESUMEN

The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.


Asunto(s)
Candida albicans/inmunología , Inmunidad Innata , Micosis/inmunología , Candida albicans/patogenicidad , Citocinas/biosíntesis , Citocinas/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Humanos , Hifa/inmunología , Hifa/patogenicidad , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología , Micosis/microbiología
7.
J Immunol ; 201(2): 627-634, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29891557

RESUMEN

Protection against microbial infection by the induction of inflammation is a key function of the IL-1 superfamily, including both classical IL-1 and the new IL-36 cytokine families. Candida albicans is a frequent human fungal pathogen causing mucosal infections. Although the initiators and effectors important in protective host responses to C. albicans are well described, the key players in driving these responses remain poorly defined. Recent work has identified a central role played by IL-1 in inducing innate Type-17 immune responses to clear C. albicans infections. Despite this, lack of IL-1 signaling does not result in complete loss of immunity, indicating that there are other factors involved in mediating protection to this fungus. In this study, we identify IL-36 cytokines as a new player in these responses. We show that C. albicans infection of the oral mucosa induces the production of IL-36. As with IL-1α/ß, induction of epithelial IL-36 depends on the hypha-associated peptide toxin Candidalysin. Epithelial IL-36 gene expression requires p38-MAPK/c-Fos, NF-κB, and PI3K signaling and is regulated by the MAPK phosphatase MKP1. Oral candidiasis in IL-36R-/- mice shows increased fungal burdens and reduced IL-23 gene expression, indicating a key role played by IL-36 and IL-23 in innate protective responses to this fungus. Strikingly, we observed no impact on gene expression of IL-17 or IL-17-dependent genes, indicating that this protection occurs via an alternative pathway to IL-1-driven immunity. Thus, IL-1 and IL-36 represent parallel epithelial cell-driven protective pathways in immunity to oral C. albicans infection.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Proteínas Fúngicas/metabolismo , Interleucina-17/metabolismo , Interleucina-1/metabolismo , Mucosa Bucal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Inmunidad Innata , Interleucina-23/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Bucal/microbiología , Receptores de Interleucina-1/genética , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Infect Dis ; 220(9): 1477-1488, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31401652

RESUMEN

BACKGROUND: Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. METHODS: In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. RESULTS: Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. CONCLUSIONS: The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections.


Asunto(s)
Candida albicans/inmunología , Candida albicans/metabolismo , Candidiasis Invasiva/microbiología , Candidiasis Invasiva/patología , Proteínas Fúngicas/metabolismo , Infiltración Neutrófila , Factores de Virulencia/metabolismo , Animales , Candida albicans/crecimiento & desarrollo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones Endogámicos BALB C , Transducción de Señal , Análisis de Supervivencia , Virulencia , Pez Cebra
9.
Infect Immun ; 86(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29109176

RESUMEN

Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1ß, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Asunto(s)
Candida albicans/patogenicidad , Células Epiteliales/microbiología , Proteínas Fúngicas/metabolismo , Membrana Mucosa/microbiología , Animales , Candidiasis Vulvovaginal/inmunología , Candidiasis Vulvovaginal/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Femenino , Proteínas Fúngicas/farmacología , Humanos , Ratones , Membrana Mucosa/patología , Infiltración Neutrófila/inmunología , Transducción de Señal , Vagina/inmunología , Vagina/metabolismo , Vagina/microbiología , Factores de Virulencia
10.
Infect Immun ; 83(4): 1705-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25667269

RESUMEN

Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation.


Asunto(s)
Arthrodermataceae/inmunología , Dermatomicosis/inmunología , Queratinocitos/microbiología , Sistema de Señalización de MAP Quinasas/inmunología , Trichophyton/inmunología , Arthrodermataceae/patogenicidad , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/biosíntesis , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inmunidad Innata , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Factor de Transcripción AP-1/biosíntesis , Trichophyton/patogenicidad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
J Infect Dis ; 209(11): 1816-26, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24357630

RESUMEN

BACKGROUND: The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage. METHODS: Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans-induced damage protection was determined using chemical inhibitors. RESULTS: Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation. CONCLUSIONS: PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling.


Asunto(s)
Candida albicans/fisiología , Células Epiteliales/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/inmunología , Humanos , Hifa , Fosfatidilinositol 3-Quinasas/genética , Análisis por Matrices de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/genética , Transcriptoma
12.
Microbes Infect ; 26(4): 105305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296157

RESUMEN

The liver, and more specifically, the liver sinusoidal endothelial cells, constitute the beginning of one of the most important responses for the elimination of hematogenously disseminated Candida albicans. Therefore, we aimed to study the mechanisms involved in the interaction between these cells and C. albicans. Transcriptomics-based analysis showed an increase in the expression of genes related to the immune response (including receptors, cytokines, and adhesion molecules), as well as to aerobic glycolysis. Further in vitro analyses showed that IL-6 production in response to C. albicans is controlled by MyD88- and SYK-pathways, suggesting an involvement of Toll-like and C-type lectin receptors and the subsequent activation of the MAP-kinases and c-Fos/AP-1 transcription factor. In addition, liver sinusoidal endothelial cells undergo metabolic reprogramming towards aerobic glycolysis induced by C. albicans, as confirmed by the increased Extracellular Acidification Rate and the overexpression of enolase (Eno2), hexonikase (Hk2) and glucose transporter 1 (Slc2a1). In conclusion, these results indicate that the hepatic endothelium responds to C. albicans by increasing aerobic glycolysis and promoting an inflammatory environment.


Asunto(s)
Candida albicans , Células Endoteliales , Glucólisis , Hígado , Candida albicans/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Animales , Hígado/metabolismo , Hígado/microbiología , Quinasa Syk/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Inflamación/metabolismo , Perfilación de la Expresión Génica , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/metabolismo
13.
Antimicrob Agents Chemother ; 57(10): 5178-80, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23896471

RESUMEN

The pathology of vulvovaginal candidiasis (VVC) caused by Candida albicans is associated with a nonprotective inflammatory response and is frequently treated with clotrimazole. We investigated the mechanisms by which clotrimazole resolves VVC. Low levels of clotrimazole, which do not block fungal growth, inhibit expression of a "danger response" transcription factor, c-Fos, block production of proinflammatory cytokines, and inhibit neutrophil infiltration to the site of infection.


Asunto(s)
Candidiasis Vulvovaginal/tratamiento farmacológico , Clotrimazol/uso terapéutico , Infiltración Neutrófila/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Candidiasis Vulvovaginal/inmunología , Línea Celular , Femenino , Humanos
14.
Microb Genom ; 9(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897935

RESUMEN

The diversity of microbial insertion sequences, crucial mobile genetic elements in generating diversity in microbial genomes, needs to be better represented in current microbial databases. Identification of these sequences in microbiome communities presents some significant problems that have led to their underrepresentation. Here, we present a bioinformatics pipeline called Palidis that recognizes insertion sequences in metagenomic sequence data rapidly by identifying inverted terminal repeat regions from mixed microbial community genomes. Applying Palidis to 264 human metagenomes identifies 879 unique insertion sequences, with 519 being novel and not previously characterized. Querying this catalogue against a large database of isolate genomes reveals evidence of horizontal gene transfer events across bacterial classes. We will continue to apply this tool more widely, building the Insertion Sequence Catalogue, a valuable resource for researchers wishing to query their microbial genomes for insertion sequences.


Asunto(s)
Bacterias , Elementos Transponibles de ADN , Humanos , Bacterias/genética , Biología Computacional , Genoma Microbiano , Metagenómica
15.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066428

RESUMEN

Candida albicans is a fungal pathobiont colonising mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonisation is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or 'pathogenesis'. Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2 and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1ß release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.

16.
Infect Dis Rep ; 15(3): 238-254, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37218816

RESUMEN

Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT).

17.
Med Microbiol Immunol ; 201(1): 93-101, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21706283

RESUMEN

Oral epithelial cells detect the human pathogenic fungus Candida albicans via NF-κB and a bi-phasic mitogen-activated protein kinase (MAPK) signaling response. However, discrimination between C. albicans yeast and hyphal forms is mediated only by the MAPK pathway, which constitutes activation of the MAPK phosphatase MKP1 and the c-Fos transcription factor and is targeted against the hyphal form. Given that C. albicans is not the only Candida species capable of filamentation or causing mucosal infections, we sought to determine whether this MAPK/MKP1/c-Fos mediated response mechanism was activated by other pathogenic Candida species, including C. dubliniensis, C. tropicalis, C. parapsilosis, C. glabrata and C. krusei. Although all Candida species activated the NF-κB signaling pathway, only C. albicans and C. dubliniensis were capable of inducing MKP1 and c-Fos activation, which directly correlated with hypha formation. However, only C. albicans strongly induced cytokine production (G-CSF, GM-CSF, IL-6 and IL-1α) and cell damage. Candida dubliniensis, C. tropicalis and C. parapsilosis were also capable of inducing IL-1α and this correlated with mild cell damage and was dependent upon fungal burdens. Our data demonstrate that activation of the MAPK/MKP1/c-Fos pathway in oral epithelial cells is specific to C. dubliniensis and C. albicans hyphae.


Asunto(s)
Candida albicans/inmunología , Candida/inmunología , Células Epiteliales/metabolismo , Hifa/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Boca/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Candida/clasificación , Candida/crecimiento & desarrollo , Candida/patogenicidad , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Línea Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/patología , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Boca/citología , Boca/inmunología , Boca/patología
18.
Pathogens ; 11(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215128

RESUMEN

Microscopic fungi are widely present in the environment and, more importantly, are also an essential part of the human healthy mycobiota. However, many species can become pathogenic under certain circumstances, with Candida spp. being the most clinically relevant fungi. In recent years, the importance of metabolism and nutrient availability for fungi-host interactions have been highlighted. Upon activation, immune and other host cells reshape their metabolism to fulfil the energy-demanding process of generating an immune response. This includes macrophage upregulation of glucose uptake and processing via aerobic glycolysis. On the other side, Candida modulates its metabolic pathways to adapt to the usually hostile environment in the host, such as the lumen of phagolysosomes. Further understanding on metabolic interactions between host and fungal cells would potentially lead to novel/enhanced antifungal therapies to fight these infections. Therefore, this review paper focuses on how cellular metabolism, of both host cells and Candida, and the nutritional environment impact on the interplay between host and fungal cells.

19.
Gut Microbes ; 14(1): 2121576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151873

RESUMEN

Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Micobioma , Hongos , Humanos , Interacciones Microbianas
20.
iScience ; 25(7): 104513, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754734

RESUMEN

The human gut microbiome has been associated with metabolic disorders including obesity, type 2 diabetes, and atherosclerosis. Understanding the contribution of microbiome metabolic changes is important for elucidating the role of gut bacteria in regulating metabolism. We used available metagenomics data from these metabolic disorders, together with genome-scale metabolic modeling of key bacteria in the individual and community-level to investigate the mechanistic role of the gut microbiome in metabolic diseases. Modeling predicted increased levels of glutamate consumption along with the production of ammonia, arginine, and proline in gut bacteria common across the disorders. Abundance profiles and network-dependent analysis identified the enrichment of tartrate dehydrogenase in the disorders. Moreover, independent plasma metabolite levels showed associations between metabolites including proline and tyrosine and an increased tartrate metabolism in healthy obese individuals. We, therefore, propose that an increased tartrate metabolism could be a significant mediator of the microbiome metabolic changes in metabolic disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA