Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant J ; 118(6): 1922-1936, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493352

RESUMEN

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factor 1 de Ensamblaje de la Cromatina , Proteínas de Unión al ADN , Homeostasis del Telómero , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Mutación , Telómero/metabolismo , Telómero/genética , Cromosomas de las Plantas/metabolismo
2.
Genes Dev ; 27(14): 1545-50, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873938

RESUMEN

Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic-nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Epigénesis Genética , ARN Ribosómico/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Modelos Genéticos , Mutación
4.
J Exp Bot ; 71(17): 5160-5178, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32556244

RESUMEN

Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.


Asunto(s)
Núcleo Celular , Cromatina , Nucléolo Celular , Regulación de la Expresión Génica , Plantas/genética
5.
PLoS Genet ; 13(1): e1006562, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095419

RESUMEN

Many plant cells can be reprogrammed into a pluripotent state that allows ectopic organ development. Inducing totipotent states to stimulate somatic embryo (SE) development is, however, challenging due to insufficient understanding of molecular barriers that prevent somatic cell dedifferentiation. Here we show that Polycomb repressive complex 2 (PRC2)-activity imposes a barrier to hormone-mediated transcriptional reprogramming towards somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. We identify factors that enable SE development in PRC2-depleted shoot and root tissue and demonstrate that the establishment of embryogenic potential is marked by ectopic co-activation of crucial developmental regulators that specify shoot, root and embryo identity. Using inducible activation of PRC2 in PRC2-depleted cells, we demonstrate that transient reduction of PRC2 activity is sufficient for SE formation. We suggest that modulation of PRC2 activity in plant vegetative tissue combined with targeted activation of developmental pathways will open possibilities for novel approaches to cell reprogramming.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Técnicas de Embriogénesis Somática de Plantas , Proteínas Represoras/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Complejo Represivo Polycomb 2 , Proteínas Represoras/genética
6.
Plant J ; 92(3): 363-374, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28786541

RESUMEN

Chromatin Assembly Factor 1 (CAF-1) is a major nucleosome assembly complex which functions particularly during DNA replication and repair. Here we studied how the nucleosome landscape changes in a CAF-1 mutant in the model plant Arabidopsis thaliana. Globally, most nucleosomes were not affected by loss of CAF-1, indicating the presence of efficient alternative nucleosome assemblers. Nucleosomes that we found depleted in the CAF-1 mutant were enriched in non-transcribed regions, consistent with the notion that CAF-1-independent nucleosome assembly can compensate for loss of CAF-1 mainly in transcribed regions. Depleted nucleosomes were particularly enriched in proximal promoters, suggesting that CAF-1-independent nucleosome assembly mechanisms are often not efficient upstream of transcription start sites. Genes related to plant defense were particularly prone to lose nucleosomes in their promoters upon CAF-1 depletion. Reduced nucleosome occupancy at promoters of many defense-related genes is associated with a primed gene expression state that may considerably increase plant fitness by facilitating plant defense. Together, our results establish that the nucleosome landscape in Arabidopsis is surprisingly robust even in the absence of the dedicated nucleosome assembly machinery CAF-1 and that CAF-1-independent nucleosome assembly mechanisms are less efficient in particular genome regions.


Asunto(s)
Arabidopsis/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Reparación del ADN/genética , Replicación del ADN/genética , Nucleosomas/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Mutación , Nucleosomas/metabolismo , Inmunidad de la Planta/genética , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción
7.
New Phytol ; 220(3): 908-921, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29573427

RESUMEN

Chromatin is assembled by histone chaperones such as chromatin assembly factor CAF-1. We had noticed that vigor of Arabidopsis thaliana CAF-1 mutants decreased over several generations. Because changes in mutant phenotype severity over generations are unusual, we asked how repeated selfing of Arabidopsis CAF-1 mutants affects phenotype severity. CAF-1 mutant plants of various generations were grown, and developmental phenotypes, transcriptomes and DNA cytosine-methylation profiles were compared quantitatively. Shoot- and root-related growth phenotypes were progressively more affected in successive generations of CAF-1 mutants. Early and late generations of the fasciata (fas)2-4 CAF-1 mutant displayed only limited changes in gene expression, of which increasing upregulation of plant defense-related genes reflects the transgenerational phenotype aggravation. Likewise, global DNA methylation in the sequence context CHG but not CG or CHH (where H = A, T or C) changed over generations in fas2-4. Crossing early and late generation fas2-4 plants established that the maternal contribution to the phenotype severity exceeds the paternal contribution. Together, epigenetic rather than genetic mechanisms underlie the progressive developmental phenotype aggravation in the Arabidopsis CAF-1 mutants and preferred maternal transmission reveals a more efficient reprogramming of epigenetic information in the male than the female germline.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigénesis Genética , Patrón de Herencia/genética , Mutación/genética , Factores de Empalme de ARN/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Óvulo Vegetal/embriología , Fenotipo , Infertilidad Vegetal , Factores de Empalme de ARN/metabolismo , Semillas/embriología , Estrés Fisiológico/genética , Transcriptoma/genética
8.
Plant J ; 88(3): 411-424, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27377564

RESUMEN

Arabidopsis thaliana mutants dysfunctional in the evolutionarily conserved protein complex chromatin assembly factor-1 (CAF-1), which deposits the canonical histone H3 variant H3.1 during DNA synthesis-dependent chromatin assembly, display complex phenotypic changes including meristem and growth alterations, sensitivity to DNA-damaging agents, and reduced fertility. We reported previously that mutants in the FAS1 subunit of CAF-1 progressively lose telomere and 45S rDNA repeats. Here we show that multiple aspects of the fas phenotype are recovered immediately on expression of a reintroduced FAS1 allele, and are clearly independent of the recovery of rDNA copy-numbers and telomeres. In reverted lines, 45S rDNA genes are recovered to diverse levels with a strikingly different representation of their variants, and the typical association of nucleolar organizing region 4 with the nucleolus is perturbed. One of 45S rDNA variants (VAR1), which is silenced in wild-type (WT) plants without mutation history (Col-0 WT), dominates the expression pattern, whereas VAR2 is dominant in Col-0 WT plants. We propose an explanation for the variability of telomere and 45S rDNA repeats associated with CAF-1 function, suggesting that the differences in nuclear partitioning and expression of the rDNA variants in fas mutants and their revertants provide a useful experimental system to study genetic and epigenetic factors in gene dosage compensation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Genoma de Planta/genética , Telómero/genética , Telómero/metabolismo
9.
EMBO J ; 32(14): 2073-85, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23778966

RESUMEN

Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1-MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2 , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Proteínas Represoras/genética
10.
Plant J ; 83(1): 121-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25762111

RESUMEN

Plant ontogeny relies on the correct timing and sequence of transitions between individual developmental phases. These are specified by gene expression patterns that are established by the balanced action of activators and repressors. Polycomb repressive complexes (PRCs) represent an evolutionarily conserved system of epigenetic gene repression that governs the establishment and maintenance of cell, tissue and organ identity, contributing to the correct execution of the developmental programs. PRC2 is a four-subunit histone methyltransferase complex that catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), which contributes to the change of chromatin structure and long-lasting gene repression. Here, we review the composition and molecular function of the different known PRC2 complexes in plants, and focus on the role of PRC2 in mediating the establishment of different developmental phases and transitions between them.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Desarrollo de la Planta , Proteínas Represoras/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complejo Represivo Polycomb 2 , Proteínas Represoras/genética , Semillas/genética , Semillas/metabolismo
11.
Plant J ; 81(2): 198-209, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25359579

RESUMEN

Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo , ADN Ribosómico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología
12.
Plant Mol Biol ; 92(4-5): 457-471, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27531496

RESUMEN

Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.


Asunto(s)
Arabidopsis/genética , ADN Espaciador Ribosómico/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Variación Genética/genética , Mutación , ARN Ribosómico/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
14.
Chromosoma ; 122(4): 285-93, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23564254

RESUMEN

Dysfunction of chromatin assembly factor 1 in FASCIATA mutants (fas) of Arabidopsis thaliana results in progressive loss of telomeric DNA. Although replicative telomere shortening is typically associated with incomplete resynthesis of their ends by telomerase, no change in telomerase activity could be detected in vitro in extracts from fas mutants. Besides a possible telomerase malfunction, the telomere shortening in fas mutants could presumably be due to problems with conventional replication of telomeres. To distinguish between the possible contribution of suboptimal function of telomerase in fas mutants under in vivo conditions and problems in conventional telomere replication, we crossed fas and tert (telomerase reverse transcriptase) knockout mutants and analyzed telomere shortening in segregated fas mutants, tert mutants, and double fas tert mutants in parallel. We demonstrate that fas tert knockouts show greater replicative telomere shortening than that observed even in the complete absence of telomerase (tert mutants). While the effect of tert and fas mutations on telomere lengths in double mutants is additive, manifestations of telomere dysfunction in double fas tert mutants (frequency of anaphase bridges, onset of chromosome end fusions, and common involvement of 45S rDNA in chromosome fusion sites) are similar to those in tert mutants. We conclude that in addition to possible impairment of telomerase action, a further mechanism contributes to telomere shortening in fas mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Mutación , Telomerasa/metabolismo , Telómero/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Factores de Empalme de ARN , Telomerasa/genética , Telómero/genética
16.
Plant Cell ; 22(8): 2768-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20699390

RESUMEN

Chromatin Assembly Factor 1 (CAF1) is a three-subunit H3/H4 histone chaperone responsible for replication-dependent nucleosome assembly. It is composed of CAC 1-3 in yeast; p155, p60, and p48 in humans; and FASCIATA1 (FAS1), FAS2, and MULTICOPY SUPPRESSOR OF IRA1 in Arabidopsis thaliana. We report that disruption of CAF1 function by fas mutations in Arabidopsis results in telomere shortening and loss of 45S rDNA, while other repetitive sequences (5S rDNA, centromeric 180-bp repeat, CACTA, and Athila) are unaffected. Substantial telomere shortening occurs immediately after the loss of functional CAF1 and slows down at telomeres shortened to median lengths around 1 to 1.5 kb. The 45S rDNA loss is progressive, leaving 10 to 15% of the original number of repeats in the 5th generation of mutants affecting CAF1, but the level of the 45S rRNA transcripts is not altered in these mutants. Increasing severity of the fas phenotype is accompanied by accumulation of anaphase bridges, reduced viability, and plant sterility. Our results show that appropriate replication-dependent chromatin assembly is specifically required for stable maintenance of telomeres and 45S rDNA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , ARN Ribosómico/metabolismo , Telómero/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN de Plantas/genética , ADN de Plantas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Mutación , ARN Ribosómico/genética
17.
Physiol Plant ; 149(1): 114-26, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23278240

RESUMEN

Although telomerase (EC 2.7.7.49) is important for genome stability and totipotency of plant cells, the principles of its regulation are not well understood. Therefore, we studied subcellular localization and function of the full-length and truncated variants of the catalytic subunit of Arabidopsis thaliana telomerase, AtTERT, in planta. Our results show that multiple sites in AtTERT may serve as nuclear localization signals, as all the studied individual domains of the AtTERT were targeted to the nucleus and/or the nucleolus. Although the introduced genomic or cDNA AtTERT transgenes display expression at transcript and protein levels, they are not able to fully complement the lack of telomerase functions in tert -/- mutants. The failure to reconstitute telomerase function in planta suggests a more complex telomerase regulation in plant cells than would be expected based on results of similar experiments in mammalian model systems.


Asunto(s)
Arabidopsis/genética , Telomerasa/química , Telomerasa/genética , Telomerasa/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico/genética , Nucléolo Celular/enzimología , Nucléolo Celular/genética , Núcleo Celular/enzimología , Núcleo Celular/genética , Regulación de la Expresión Génica de las Plantas , Señales de Localización Nuclear/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Empalme del ARN , Relación Estructura-Actividad , Nicotiana/genética
18.
Epigenomes ; 6(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35076495

RESUMEN

Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.

19.
Life Sci Alliance ; 5(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35440471

RESUMEN

Polycomb repressive complex 2 (PRC2) is involved in maintaining transcriptionally silent chromatin states through methylating lysine 27 of histone H3 by the catalytic subunit enhancer of zeste [E(z)]. Here, we report the diversity of PRC2 core subunit proteins in different eukaryotic supergroups with emphasis on the early-diverged lineages and explore the molecular evolution of PRC2 subunits by phylogenetics. For the first time, we identify the putative ortholog of E(z) in Discoba, a lineage hypothetically proximal to the eukaryotic root, strongly supporting emergence of PRC2 before the diversification of eukaryotes. Analyzing 283 species, we robustly detect a common presence of E(z) and ESC, indicating a conserved functional core. Full-length Su(z)12 orthologs were identified in some lineages and species only, indicating, nonexclusively, high divergence of VEFS-Box-containing Su(z)12-like proteins, functional convergence of sequence-unrelated proteins, or Su(z)12 dispensability. Our results trace E(z) evolution within the SET-domain protein family, proposing a substrate specificity shift during E(z) evolution based on SET-domain and H3 histone interaction prediction.


Asunto(s)
Proteínas de Drosophila , Complejo Represivo Polycomb 2 , Proteínas de Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Filogenia , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
20.
Curr Opin Plant Biol ; 69: 102265, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988353

RESUMEN

Plants show exceptional developmental plasticity and the ability to reprogram cell identities during regeneration. Although regeneration has been used in plant propagation for decades, we only recently gained detailed cellular and molecular insights into this process. Evidently, not all cell types have the same regeneration potential, and only a subset of regeneration-competent cells reach pluripotency. Pluripotent cells exhibit transcriptional similarity to root stem cells. In different plant regeneration systems, transcriptional reprogramming involves transient release of chromatin repression during pluripotency establishment and its restoration during organ or embryo differentiation. Incomplete resetting of the epigenome leads to somaclonal variation in regenerated plants. As single-cell technologies advance, we expect novel, exciting insights into epigenome dynamics during the establishment of pluripotency.


Asunto(s)
Cromatina , Plantas , Cromatina/genética , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA