Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 25(11): 2539-45, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24722440

RESUMEN

Odd-skipped related 1 (Osr1) encodes a zinc finger transcription factor required for kidney development. Osr1 deficiency in mice results in metanephric kidney agenesis, whereas knockdown or mutation studies in zebrafish revealed that pronephric nephrons require osr1 for proximal tubule and podocyte development. osr1-deficient pronephric podocyte progenitors express the Wilms' tumor suppressor wt1a but do not undergo glomerular morphogenesis or express the foot process junctional markers nephrin and podocin. The function of osr1 in podocyte differentiation remains unclear, however. Here, we found by double fluorescence in situ hybridization that podocyte progenitors coexpress osr1 and wt1a. Knockdown of wt1a disrupted podocyte differentiation and prevented expression of osr1. Blocking retinoic acid signaling, which regulates wt1a, also prevented osr1 expression in podocyte progenitors. Furthermore, unlike the osr1-deficient proximal tubule phenotype, which can be rescued by manipulation of endoderm development, podocyte differentiation was not affected by altered endoderm development, as assessed by nephrin and podocin expression in double osr1/sox32-deficient embryos. These results suggest a different, possibly cell- autonomous requirement for osr1 in podocyte differentiation downstream of wt1a. Indeed, osr1-deficient embryos did not exhibit podocyte progenitor expression of the transcription factor lhx1a, and forced expression of activated forms of the lhx1a gene product rescued nephrin expression in osr1-deficient podocytes. Our results place osr1 in a framework of transcriptional regulators that control the expression of podocin and nephrin and thereby mediate podocyte differentiation.


Asunto(s)
Podocitos/fisiología , Factores de Transcripción/fisiología , Proteínas WT1/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Diferenciación Celular/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales/citología , Túbulos Renales/embriología , Túbulos Renales/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/fisiología , Masculino , Podocitos/citología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Transcripción Genética/fisiología , Proteínas WT1/genética , Pez Cebra , Proteínas de Pez Cebra/genética
2.
Dev Dyn ; 243(12): 1571-80, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25233796

RESUMEN

BACKGROUND: Early embryo patterning is orchestrated by tightly regulated morphogen gradients. The Nodal morphogen patterns the mesendoderm, giving rise to all endoderm and head and trunk mesoderm. High Nodal concentrations favor endoderm differentiation while lower promote mesoderm differentiation. Nodal signaling is controlled by both positive and negative feedback regulation to ensure robust developmental patterning. RESULTS: Here we identify odd skipped related 1 (osr1), a zinc finger transcription factor, as a new element in Nodal feedback regulation affecting endoderm development. We show that osr1 expression in zebrafish germ ring mesendoderm requires Nodal signaling; osr1 expression was lost in embryos lacking Nodal signaling. Conversely, osr1 expression was ectopically induced by the activation of Nodal signaling. Furthermore we demonstrate that osr1 responds directly to Nodal signaling. Additionally, osr1 knockdown generated excess endoderm cells marked by sox32 expression while expression of osr1 mRNA was not affected in sox32-deficient embryos. CONCLUSIONS: Our findings identify osr1 as a Nodal-induced, negative feedback regulator of Nodal signaling that acts at the earliest stages of endoderm differentiation to limit the number of endoderm progenitors. As such, we propose that osr1 represents a novel network motif controlling the output of Nodal signaling to regulate mesendoderm patterning.


Asunto(s)
Endodermo/embriología , Proteína Nodal/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Nodal/genética , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Development ; 135(20): 3355-67, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18787069

RESUMEN

The kidney and vasculature are intimately linked both functionally and during development, when nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms that underlie the differentiation of kidney versus blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc-finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, an enlarged cardinal vein and expansion of the posterior venous plexus. Altered kidney versus vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm; in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney towards vascular development.


Asunto(s)
Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Riñón/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Embrión no Mamífero , Endodermo/citología , Endodermo/metabolismo , Inmunohistoquímica , Hibridación in Situ , Microinyecciones , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA