Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Res ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509227

RESUMEN

Pregnant individuals with viral illness may experience significant morbidity and have higher rates of pregnancy and neonatal complications. With the growing number of viral infections and new viral pandemics, it is important to examine the effects of infection during pregnancy on both the gestational parent and the offspring. Febrile illness and inflammation during pregnancy are correlated with risk for autism, attention deficit/hyperactivity disorder, and developmental delay in the offspring in human and animal models. Historical viral epidemics had limited follow-up of the offspring of affected pregnancies. Infants exposed to seasonal influenza and the 2009 H1N1 influenza virus experienced increased risks of congenital malformations and neuropsychiatric conditions. Zika virus exposure in utero can lead to a spectrum of abnormalities, ranging from severe microcephaly to neurodevelopmental delays which may appear later in childhood and in the absence of Zika-related birth defects. Vertical infection with severe acute respiratory syndrome coronavirus-2 has occurred rarely, but there appears to be a risk for developmental delays in the infants with antenatal exposure. Determining how illness from infection during pregnancy and specific viral pathogens can affect pregnancy and neurodevelopmental outcomes of offspring can better prepare the community to care for these children as they grow. IMPACT: Viral infections have impacted pregnant people and their offspring throughout history. Antenatal exposure to maternal fever and inflammation may increase risk of developmental and neurobehavioral disorders in infants and children. The recent SARS-CoV-2 pandemic stresses the importance of longitudinal studies to follow pregnancies and offspring neurodevelopment.

2.
Pediatr Res ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937640

RESUMEN

Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use. IMPACT: Reviews available genetic testing options during the prenatal period in detail. Discusses the impact of prenatal genetic testing on care using case-based examples. Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.

3.
Pediatr Res ; 95(2): 543-550, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042947

RESUMEN

Recent decades have witnessed the emergence and re-emergence of numerous medically important viruses that cause central nervous system (CNS) infections in children, e.g., Zika, West Nile, and enterovirus/parechovirus. Children with immature immune defenses and blood-brain barrier are more vulnerable to viral CNS infections and meningitis than adults. Viral invasion into the CNS causes meningitis, encephalitis, brain imaging abnormalities, and long-term neurodevelopmental sequelae. Rapid and accurate detection of neurotropic viral infections is essential for diagnosing CNS diseases and setting up an appropriate patient management plan. The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis/encephalitis. However, the expansion of test menu has led to new challenges in selecting appropriate tests and making accurate interpretation of test results. There are unmet gaps in development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses. Herein we will discuss the advances and challenges in the laboratory diagnosis of viral CNS infections in children. This review not only sheds light on selection and interpretation of a suitable diagnostic test for emerging/re-emerging neurotropic viruses, but also calls for more research on development and clinical utility study of novel molecular assays. IMPACT: Children with immature immune defenses and blood-brain barrier, especially neonates and infants, are more vulnerable to viral central nervous system infections and meningitis than adults. The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis and encephalitis. There are unmet gaps in the development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses.


Asunto(s)
Infecciones del Sistema Nervioso Central , Enfermedades Virales del Sistema Nervioso Central , Encefalitis , Meningitis , Virus , Infección por el Virus Zika , Virus Zika , Adulto , Lactante , Recién Nacido , Niño , Humanos , Infecciones del Sistema Nervioso Central/diagnóstico , Enfermedades Virales del Sistema Nervioso Central/diagnóstico , Técnicas de Laboratorio Clínico
4.
Pediatr Res ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438554

RESUMEN

Since 2016, international research groups have focused on assessing outcomes of children with in utero Zika virus (ZIKV) exposure. While the more severe outcomes of congenital Zika syndrome (CZS) occur in up to 10% of children with antenatal exposure, early findings among ZIKV-exposed children without CZS ages 0-5 years suggest that they may also have differences in multiple domains of neurodevelopment. Thus, longitudinal follow-up of all children with antenatal ZIKV exposure has been recommended. This review presents a summary of neurodevelopmental phenotypes of infants and children following antenatal ZIKV exposure. We present a multidimensional framework to understand child neurodevelopment from an interdisciplinary and whole-child perspective (International Classification of Functioning, Disability and Health model) and multi-domain ZIKV Outcome Toolboxes. The toolboxes are for clinicians, researchers, child educators, and others to implement longitudinal multi-domain neurodevelopmental assessments between ages 0-12 years. Recent innovations in telehealth and neuroimaging can help evaluate outcomes in ZIKV exposed children. The objective is to describe the multiple facets of neurodevelopmental focused care that can support the health, function, and well-being of children with antenatal ZIKV exposure. The research and clinical follow-up strategies are applicable to ZIKV and other congenital infectious or environmental exposures that can impact child neurodevelopment. IMPACT: International longitudinal cohort studies have revealed a range of differences in neurodevelopment among children with antenatal Zika virus (ZIKV) exposure. A multidimensional and whole-child framework is necessary to understand the neurodevelopment of children with antenatal ZIKV exposure in relation to family life, community participation, and environment. Multi-domain toolboxes that utilize parent questionnaires and child evaluations are presented. These toolboxes can be used internationally alongside telehealth, brain imaging, and other innovations to improve understanding of child outcomes.

5.
Pediatr Res ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902453

RESUMEN

BACKGROUND: 'Neonatal encephalopathy' (NE) describes a group of conditions in term infants presenting in the earliest days after birth with disturbed neurological function of cerebral origin. NE is aetiologically heterogenous; one cause is peripartum hypoxic ischaemia. Lack of uniformity in the terminology used to describe NE and its diagnostic criteria creates difficulty in the design and interpretation of research and complicates communication with families. The DEFINE study aims to use a modified Delphi approach to form a consensus definition for NE, and diagnostic criteria. METHODS: Directed by an international steering group, we will conduct a systematic review of the literature to assess the terminology used in trials of NE, and with their guidance perform an online Real-time Delphi survey to develop a consensus diagnosis and criteria for NE. A consensus meeting will be held to agree on the final terminology and criteria, and the outcome disseminated widely. DISCUSSION: A clear and consistent consensus-based definition of NE and criteria for its diagnosis, achieved by use of a modified Delphi technique, will enable more comparability of research results and improved communication among professionals and with families. IMPACT: The terms Neonatal Encephalopathy and Hypoxic Ischaemic Encephalopathy tend to be used interchangeably in the literature to describe a term newborn with signs of encephalopathy at birth. This creates difficulty in communication with families and carers, and between medical professionals and researchers, as well as creating difficulty with performance of research. The DEFINE project will use a Real-time Delphi approach to create a consensus definition for the term 'Neonatal Encephalopathy'. A definition formed by this consensus approach will be accepted and utilised by the neonatal community to improve research, outcomes, and parental experience.

6.
Pediatr Res ; 95(2): 558-565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658124

RESUMEN

BACKGROUND: To characterize neurodevelopmental abnormalities in children up to 36 months of age with congenital Zika virus exposure. METHODS: From the U.S. Zika Pregnancy and Infant Registry, a national surveillance system to monitor pregnancies with laboratory evidence of Zika virus infection, pregnancy outcomes and presence of Zika associated birth defects (ZBD) were reported among infants with available information. Neurologic sequelae and developmental delay were reported among children with ≥1 follow-up exam after 14 days of age or with ≥1 visit with development reported, respectively. RESULTS: Among 2248 infants, 10.1% were born preterm, and 10.5% were small-for-gestational age. Overall, 122 (5.4%) had any ZBD; 91.8% of infants had brain abnormalities or microcephaly, 23.0% had eye abnormalities, and 14.8% had both. Of 1881 children ≥1 follow-up exam reported, neurologic sequelae were more common among children with ZBD (44.6%) vs. without ZBD (1.5%). Of children with ≥1 visit with development reported, 46.8% (51/109) of children with ZBD and 7.4% (129/1739) of children without ZBD had confirmed or possible developmental delay. CONCLUSION: Understanding the prevalence of developmental delays and healthcare needs of children with congenital Zika virus exposure can inform health systems and planning to ensure services are available for affected families. IMPACT: We characterize pregnancy and infant outcomes and describe neurodevelopmental abnormalities up to 36 months of age by presence of Zika associated birth defects (ZBD). Neurologic sequelae and developmental delays were common among children with ZBD. Children with ZBD had increased frequency of neurologic sequelae and developmental delay compared to children without ZBD. Longitudinal follow-up of infants with Zika virus exposure in utero is important to characterize neurodevelopmental delay not apparent in early infancy, but logistically challenging in surveillance models.


Asunto(s)
Microcefalia , Trastornos del Neurodesarrollo , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Lactante , Recién Nacido , Embarazo , Niño , Femenino , Humanos , Preescolar , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/congénito , Complicaciones Infecciosas del Embarazo/epidemiología , Microcefalia/epidemiología , Trastornos del Neurodesarrollo/complicaciones
7.
J Pediatr Psychol ; 49(5): 321-339, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38244996

RESUMEN

OBJECTIVE: The objective of this study was to systematically review the standardized neurodevelopmental assessments used to study preschool-aged children's cognitive development in Spanish-speaking Latin America. METHODS: The authors systematically searched PubMed, PsycINFO, and ERIC databases for peer-reviewed articles from Spanish-speaking Latin American countries. Articles were included if they measured cognitive development among children aged 2-6 years using at least one standardized assessment tool; 97 articles were included and reviewed in accordance with PRISMA guidelines to assess their use of these tools. RESULTS: Ninety-seven studies across 13 countries used a total of 41 assessments to measure cognitive development; most widely used were the Wechsler intelligence scales (n = 46/97), particularly the Wechsler Preschool and Primary Scale of Intelligence and Wechsler Intelligence Scale for Children (n = 23 and 29, respectively). Other common assessments included the McCarthy Scales of Children's Abilities (n = 9), Raven's Progressive Matrices (n = 9), Child Neuropsychological Assessment (n = 8), and Peabody Picture Vocabulary Test (n = 7). In regions where normative data for a given assessment were unpublished, authors commonly used norms from the United States, Mexico, or Spain or did not report standard scores in their analyses. CONCLUSIONS: The wide range of tools used in these studies presents a challenge for generalizing results when measuring the neurodevelopment of Latin American preschool-aged children. The low availability of normative data for specific regions reveals concerns if some tools are culturally and linguistically appropriate even when Spanish is a common language, particularly in low-resource settings. Future work to forge greater consistency in the use of validated measures, clarity in reporting research methods, and publication of regional normative data would benefit the field.


Asunto(s)
Desarrollo Infantil , Cognición , Humanos , América Latina , Preescolar , Desarrollo Infantil/fisiología , Niño , Pruebas Neuropsicológicas/normas , Pruebas Neuropsicológicas/estadística & datos numéricos
8.
Curr Opin Infect Dis ; 36(5): 405-413, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466092

RESUMEN

PURPOSE OF REVIEW: Congenital infections are a major cause of childhood multidomain neurodevelopmental disabilities. They contribute to a range of structural brain abnormalities that can cause severe neurodevelopmental impairment, cerebral palsy, epilepsy, and neurosensory impairments. New congenital infections and global viral pandemics have emerged, with some affecting the developing brain and causing neurodevelopmental concerns. This review aims to provide current understanding of fetal infections and their impact on neurodevelopment. RECENT FINDINGS: There are a growing list of congenital infections causing neurodevelopmental issues, including cytomegalovirus, Zika virus, syphilis, rubella, lymphocytic choriomeningitis virus, and toxoplasmosis. Fetal exposure to maternal SARS-CoV-2 may also pose risk to the developing brain and impact neurodevelopmental outcomes, although studies have conflicting results. As Zika virus was a recently identified congenital infection, there are several new reports on child neurodevelopment in the Caribbean and Central and South America. For many congenital infections, children with in-utero exposure, even if asymptomatic at birth, may have neurodevelopmental concerns manifest over time. SUMMARY: Congenital infections should be considered in the differential diagnosis of a child with neurodevelopmental impairments. Detailed pregnancy history, exposure risk, and testing should guide diagnosis and multidisciplinary evaluation. Children with congenital infections should have long-term follow-up to assess for neurodevelopmental delays and other neurosensory impairments. Children with confirmed delays or high-risk should be referred for rehabilitation therapies.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Recién Nacido , Embarazo , Niño , Femenino , Humanos , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/congénito , SARS-CoV-2 , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/diagnóstico
9.
Am J Obstet Gynecol ; 228(3): 261-269, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36243041

RESUMEN

Stillbirth is a recognized complication of COVID-19 in pregnant women that has recently been demonstrated to be caused by SARS-CoV-2 infection of the placenta. Multiple global studies have found that the placental pathology present in cases of stillbirth consists of a combination of concurrent destructive findings that include increased fibrin deposition that typically reaches the level of massive perivillous fibrin deposition, chronic histiocytic intervillositis, and trophoblast necrosis. These 3 pathologic lesions, collectively termed SARS-CoV-2 placentitis, can cause severe and diffuse placental parenchymal destruction that can affect >75% of the placenta, effectively rendering it incapable of performing its function of oxygenating the fetus and leading to stillbirth and neonatal death via malperfusion and placental insufficiency. Placental infection and destruction can occur in the absence of demonstrable fetal infection. Development of SARS-CoV-2 placentitis is a complex process that may have both an infectious and immunologic basis. An important observation is that in all reported cases of SARS-CoV-2 placentitis causing stillbirth and neonatal death, the mothers were unvaccinated. SARS-CoV-2 placentitis is likely the result of an episode of SARS-CoV-2 viremia at some time during the pregnancy. This article discusses clinical and pathologic aspects of the relationship between maternal COVID-19 vaccination, SARS-CoV-2 placentitis, and perinatal death.


Asunto(s)
COVID-19 , Corioamnionitis , Muerte Perinatal , Complicaciones Infecciosas del Embarazo , Embarazo , Recién Nacido , Femenino , Humanos , Mortinato/epidemiología , SARS-CoV-2 , Placenta , Vacunas contra la COVID-19 , Madres , Fibrina , Transmisión Vertical de Enfermedad Infecciosa
10.
Pediatr Res ; 94(1): 178-184, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36446920

RESUMEN

BACKGROUND: Children with in utero Zika virus (ZIKV) exposure without congenital Zika syndrome (CZS) are at risk for abnormal neurodevelopment. Preschool-age outcomes for children with antenatal ZIKV exposure have not yet been established. METHODS: Children with in utero ZIKV exposure and non-exposed controls had neurodevelopmental evaluations at age 3-5 years in Sabanalarga, Colombia. Cases did not have CZS and were previously evaluated prenatally through age 18 months. Controls were born before ZIKV arrival to Colombia. Neurodevelopmental assessments included Pediatric Evaluation of Disability Inventory (PEDI-CAT), Behavior Rating Inventory of Executive Function (BRIEF-P), Bracken School Readiness Assessment (BSRA), and Movement Assessment Battery for Children (MABC). Family demographics and child medical history were recorded. RESULTS: Fifty-five ZIKV-exposed children were evaluated at mean age 3.6 years and 70 controls were evaluated at 5.2 years. Family demographics were similar between groups. BRIEF-P t-scores were higher for cases than controls in shift and flexibility domains. Cases had lower PEDI-CAT mobility t-scores compared to controls. There was no difference in MABC between groups. In 11% of cases and 1% of controls, parents reported child mood problems. CONCLUSIONS: Children with in utero ZIKV exposure without CZS may demonstrate emerging differences in executive function, mood, and adaptive mobility that require continued evaluation. IMPACT: Preschool neurodevelopmental outcome in children with in utero Zika virus exposure is not yet known, since the Zika virus epidemic occurred in 2015-2017 and these children are only now entering school age. This study finds that Colombian children with in utero Zika virus exposure without congenital Zika syndrome are overall developing well but may have emerging differences in executive function, behavior and mood, and adaptive mobility compared to children without in utero Zika virus exposure. Children with in utero Zika virus exposure require continued multi-domain longitudinal neurodevelopmental evaluation through school age.


Asunto(s)
Microcefalia , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Humanos , Embarazo , Femenino , Infección por el Virus Zika/congénito , Complicaciones Infecciosas del Embarazo/epidemiología , Escolaridad , Instituciones Académicas
11.
Pediatr Radiol ; 53(9): 1941-1950, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37183230

RESUMEN

BACKGROUND: Fetal ventriculomegaly is a source of apprehension for expectant parents and may present prognostic uncertainty for physicians. Accurate prenatal counseling requires knowledge of its cause and associated findings as the differential diagnosis is broad. We have observed an association between ventriculomegaly and incomplete hippocampal inversion. OBJECTIVE: To determine whether ventricular size is related to incomplete hippocampal inversion. MATERIALS AND METHODS: We retrospectively evaluated pre- and postnatal brain MRIs in normal subjects (mean GA, 31 weeks; mean postnatal age, 27 days) and patients with isolated ventriculomegaly (mean GA, 31 weeks; mean postnatal age, 68 days) at a single academic medical center. Lateral ventricular diameter, multiple qualitative and quantitative markers of hippocampal inversion, and evidence of intraventricular hemorrhage were documented. RESULTS: Incomplete hippocampal inversion and ventricular size were associated in both normal subjects (n=51) and patients with ventriculomegaly (n=32) (P<0.05). Severe ventriculomegaly was significantly associated with adverse clinical outcome in postnatal (P=0.02) but not prenatal (P=0.43) groups. In all additional cases of isolated ventriculomegaly, clinical outcome was normal over the time of assessment (mean 1±1.9 years; range 0.01 to 10 years). CONCLUSION: Lateral ventricular atrial diameter and incomplete hippocampal inversion are associated. Less hippocampal inversion correlates with larger atria. For every 1-mm increase in fetal ventricular size, the odds of incomplete hippocampal inversion occurring increases by a factor of 1.6 in normal controls and 1.4 in patients with ventriculomegaly.


Asunto(s)
Fibrilación Atrial , Hidrocefalia , Femenino , Humanos , Lactante , Embarazo , Fibrilación Atrial/complicaciones , Hidrocefalia/diagnóstico por imagen , Diagnóstico Prenatal , Estudios Retrospectivos , Rotación , Ultrasonografía Prenatal
12.
Child Care Health Dev ; 49(5): 825-833, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37012218

RESUMEN

BACKGROUND: The COVID-19 pandemic has impacted the lives of children and families worldwide. The objective of this study is to examine exposures and impact of the COVID-19 pandemic on preschool-aged children and caregivers in the Atlántico region of Colombia. METHODS: The COVID-19 Exposure and Family Impact Scales (CEFIS) questionnaire was administered in Fall 2021 to 63 caregivers of children in Sabanalarga, Colombia enrolled in a neurodevelopment study as healthy controls. The CEFIS assesses pandemic-related exposures/events and impact; higher scores indicate greater exposure and negative impact. Descriptive and correlation analyses among exposure and impact scores were conducted. RESULTS: Caregivers reported a mean (standard deviation[SD]) of 11.1 (3.2) among 25 COVID-19-related exposures/events; most common types included stay-at-home orders, school closures, disruptions to living conditions and income loss. Total number of events was correlated with higher caregiver (P < .001) and child distress (P = .002). However, the mean (SD) impact score of 2.0 (0.6) suggests a trend toward more positive impact than negative. Caregivers reported improvements to sleep, exercise and family interactions. Some caregivers (n = 21) qualitatively reported negative effects including unemployment, fear/anxiety and inability to visit family, and positive effects such as unification, family closeness and spending more time with children. CONCLUSIONS: This study highlights the importance of comprehensively exploring positive and negative impacts of COVID-19 and families' subsequent resilience and transformation. Using tools like the CEFIS, those seeking to mitigate negative impacts can contextualize data to better understand study outcomes and tailor services, resources and policy to families' unique needs. CEFIS data likely depend on timing, economic/public health resources and cultural values; future work should prioritize understanding the generalizability of CEFIS findings across samples.


Asunto(s)
COVID-19 , Preescolar , Humanos , Niño , COVID-19/epidemiología , Colombia/epidemiología , Pandemias , Emociones , Ejercicio Físico , Cuidadores
13.
Pediatr Res ; 91(7): 1723-1729, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34963700

RESUMEN

BACKGROUND: Brain injury is a serious and common complication of critical congenital heart disease (CHD). Impaired autonomic development (assessed by heart rate variability (HRV)) is associated with brain injury in other high-risk neonatal populations. OBJECTIVE: To determine whether impaired early neonatal HRV is associated with pre-operative brain injury in CHD. METHODS: In infants with critical CHD, we evaluated HRV during the first 24 h of cardiac ICU (CICU) admission using time-domain (RMS 1, RMS 2, and alpha 1) and frequency-domain metrics (LF, nLF, HF, nHF). Pre-operative brain magnetic resonance imaging (MRI) was scored for injury using an established system. Spearman's correlation coefficient was used to determine the association between HRV and pre-operative brain injury. RESULTS: We enrolled 34 infants with median birth gestational age of 38.8 weeks (IQR 38.1-39.1). Median postnatal age at pre-operative brain MRI was 2 days (IQR 1-3 days). Thirteen infants had MRI evidence of brain injury. RMS 1 and RMS 2 were inversely correlated with pre-operative brain injury. CONCLUSIONS: Time-domain metrics of autonomic function measured within the first 24 h of admission to the CICU are associated with pre-operative brain injury, and may perform better than frequency-domain metrics under non-stationary conditions such as critical illness. IMPACT: Autonomic dysfunction, measured by heart rate variability (HRV), in early transition is associated with pre-operative brain injury in neonates with critical congenital heart disease. These data extend our earlier findings by providing further evidence for (i) autonomic dysfunction in infants with CHD, and (ii) an association between autonomic dysfunction and brain injury in critically ill neonates. These data support the notion that further investigation of HRV as a biomarker for brain injury risk is warranted in infants with critical CHD.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Lesiones Encefálicas , Cardiopatías Congénitas , Sistema Nervioso Autónomo , Enfermedades del Sistema Nervioso Autónomo/etiología , Lesiones Encefálicas/complicaciones , Enfermedad Crítica , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/cirugía , Frecuencia Cardíaca/fisiología , Humanos , Lactante , Recién Nacido
14.
Pediatr Res ; 91(1): 171-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33654284

RESUMEN

BACKGROUND: Previous studies have described an association between preterm birth and maturation of the autonomic nervous system (ANS); however, this may be impacted by multiple factors, including prematurity-related complications. Our aim was to evaluate for the effect of prematurity-related morbidity on ANS development in preterm infants in the NICU. METHODS: We compared time and frequency domains of heart rate variability (HRV) as a measure of ANS tone in 56 preterm infants from 2 NICUs (28 from each). One cohort was from a high-morbidity regional referral NICU, the other from a community-based inborn NICU with low prematurity-related morbidity. Propensity score matching was used to balance the groups by a 1:1 nearest neighbor design. ANS tone was analyzed. RESULTS: The two cohorts showed parallel maturational trajectory of the alpha 1 time-domain metric, with the cohort from the high-morbidity NICU having lower autonomic tone. The maturational trajectories between the two cohorts differed in all other time-domain metrics (alpha 2, RMS1, RMS2). There was no difference between groups by frequency-domain metrics. CONCLUSIONS: Prematurity-associated morbidities correlate with autonomic development in premature infants and may have a greater impact on the extrauterine maturation of this system than birth gestational age. IMPACT: Autonomic nervous system development measured by time-domain metrics of heart rate variability correlate with morbidities associated with premature birth. This study builds upon our previously published work that showed that development of autonomic tone was not impacted by gestational age at birth. This study adds to our understanding of autonomic nervous system development in a preterm extrauterine environment. Our study suggests that gestational age at birth may have less impact on autonomic nervous system development than previously thought.


Asunto(s)
Sistema Nervioso Autónomo/crecimiento & desarrollo , Recien Nacido Prematuro , Morbilidad , Femenino , Edad Gestacional , Frecuencia Cardíaca , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Puntaje de Propensión
15.
Pediatr Res ; 89(4): 863-868, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32396923

RESUMEN

BACKGROUND: In premature infants, we investigated whether the duration of extrauterine development influenced autonomic nervous system (ANS) maturation. METHODS: We performed a longitudinal cohort study of ANS maturation in preterm infants. Eligibility included birth gestational age (GA) < 37 weeks, NICU admission, and expected survival. The cohort was divided into three birth GA groups: Group 1 (≤29 weeks), Group 2 (30-33 weeks), and Group 3 (≥34 weeks). ECG data were recorded weekly and analyzed for sympathetic and parasympathetic tone using heart rate variability (HRV). Quantile regression modeled the slope of ANS maturation among the groups by postnatal age to term-equivalent age (TEA) (≥37 weeks). RESULTS: One hundred infants, median (Q1-Q3) birth GA of 31.9 (28.7-33.9) weeks, were enrolled: Group 1 (n = 35); Group 2 (n = 40); and Group 3 (n = 25). Earlier birth GA was associated with lower sympathetic and parasympathetic tone. However, the rate of autonomic maturation was similar, and at TEA there was no difference in HRV metrics across the three groups. The majority of infants (91%) did not experience significant neonatal morbidities. CONCLUSION: Premature infants with low prematurity-related systemic morbidity have maturational trajectories of ANS development that are comparable across a wide range of ex-utero durations regardless of birth GA. IMPACT: Heart rate variability can evaluate the maturation of the autonomic nervous system. Metrics of both the sympathetic and parasympathetic nervous system show maturation in the premature extrauterine milieu. The autonomic nervous system in preterm infants shows comparable maturation across a wide range of birth gestational ages. Preterm newborns with low medical morbidity have maturation of their autonomic nervous system while in the NICU. Modern NICU advances appear to support autonomic development in the preterm infant.


Asunto(s)
Sistema Nervioso Autónomo/crecimiento & desarrollo , Recien Nacido Prematuro/fisiología , Sistema Nervioso Autónomo/fisiopatología , Electrocardiografía , Femenino , Edad Gestacional , Frecuencia Cardíaca , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Cuidado Intensivo Neonatal , Estudios Longitudinales , Masculino , Embarazo , Estudios Prospectivos , Análisis de Regresión
16.
Clin Auton Res ; 31(3): 415-424, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33718981

RESUMEN

PURPOSE: The mature central autonomic network includes connectivity between autonomic nervous system brainstem centers and the cerebral cortex. The study objective was to evaluate the regional connectivity between the cerebral cortex and brainstem autonomic centers in term newborns by measuring coherence between high-density electroencephalography and heart rate variability as measured by electrocardiography. METHODS: Low-risk term newborns with birth gestational age of 39-40 weeks were prospectively enrolled and studied using time-synced electroencephalography and electrocardiography for up to 60 min before discharge from the birth hospital. The ccortical autonomicc nervous system association was analyzed using coherence between electroencephalography-delta power and heart rate variability. Heart rate variability measured the parasympathetic tone (root mean square of successive differences of heart rate) and sympathetic tone (standard deviation of heart rate). RESULTS: One hundred and twenty-nine low-risk term infants were included. High coherence delta-root mean square of successive differences was found in central, bitemporal, and occipital brain regions, with less robust coherence delta-standard deviation in the central region and bitemporal areas. CONCLUSIONS: Our findings describe a topography of ccortical autonomicc connectivity present at term in low-risk newborns, which was more robust to parasympathetic than sympathetic brainstem centers and was independent of newborn state.


Asunto(s)
Sistema Nervioso Autónomo , Electrocardiografía , Corteza Cerebral , Electroencefalografía , Frecuencia Cardíaca , Humanos , Lactante , Recién Nacido
17.
Pediatr Radiol ; 51(8): 1457-1470, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33783580

RESUMEN

BACKGROUND: Dandy-Walker malformation and Blake pouch cysts can have overlapping imaging features. The choroid plexus and associated taenia-tela choroidea complex are displaced inferolaterally in Dandy-Walker malformation and below the vermis in Blake pouch cysts. OBJECTIVE: To determine the normal fetal and postnatal MR appearance of the choroid plexus and taenia-tela choroidea complex, and whether their location can help distinguish Dandy-Walker malformation from Blake pouch cysts. MATERIALS AND METHODS: In this retrospective study, we evaluated brain MR exams from normal-appearing fetuses (gestational age 19-38 weeks) and infants, fetal and postnatal exams in Blake pouch cysts and Dandy-Walker malformation, and ambiguous cases equivocal for mild Dandy-Walker malformation and Blake pouch cysts. We documented choroid plexus and the taenia-tela choroidea complex location and axial and sagittal angles in each case. Then we contrasted and compared the original and updated fetal diagnoses based on taenia-tela choroidea complex and choroid plexus positions. RESULTS: The choroid plexus location and the taenia-tela choroidea complex location and angles varied significantly among normal exams, Blake pouch cyst exams and Dandy-Walker malformation exams (P<0.01). Dandy-Walker malformation showed inferolateral displacement of the taenia-tela choroidea complex and choroid plexus distant from the vermis. Adding the taenia-tela choroidea complex and choroid plexus into the assessment improved diagnostic accuracy, especially in ambiguous cases. CONCLUSION: The location of the taenia-tela choroidea complex and choroid plexus provided additional diagnostic neuroimaging clues that could be used in conjunction with other conventional findings to distinguish Dandy-Walker malformation and Blake pouch cysts. Normal, Blake pouch cyst, and Dandy-Walker malformation cases differed with regard to taenia-tela choroidea complex and choroid plexus position. Inferolateral taenia-tela choroidea complex displacement distant from the vermian margin was characteristic of Dandy-Walker malformation.


Asunto(s)
Quistes , Síndrome de Dandy-Walker , Taenia , Animales , Plexo Coroideo/diagnóstico por imagen , Fosa Craneal Posterior , Quistes/diagnóstico por imagen , Síndrome de Dandy-Walker/diagnóstico por imagen , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Estudios Retrospectivos
18.
Pediatr Res ; 87(5): 879-884, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31261373

RESUMEN

BACKGROUND: Newborns with hypoxic-ischemic encephalopathy (HIE) may exhibit abnormalities on placental histology. In this phase II clinical trial ancillary study, we hypothesized that placental abnormalities correlate with MRI brain injury and with response to treatment. METHODS: Fifty newborns with moderate/severe encephalopathy who received hypothermia were enrolled in a double-blind, placebo-controlled trial of erythropoietin for HIE. A study pathologist reviewed all available clinical pathology reports to determine the presence of chronic abnormalities and acute chorioamnionitis. Neonatal brain MRIs were scored using a validated HIE scoring system. RESULTS: Placental abnormalities in 19 of the 35 (54%) patients with available pathology reports included chronic changes (N = 13), acute chorioamnionitis (N = 9), or both (N = 3). MRI subcortical brain injury was less common in infants with a placental abnormality (26 vs. 69%, P = 0.02). Erythropoietin treatment was associated with a lower global brain injury score (median 2.0 vs. 11.5, P = 0.003) and lower rate of subcortical brain injury (33 vs. 90%, P = 0.01) among patients with no chronic placental abnormality but not in patients whose placentas harbored a chronic abnormality. CONCLUSION: Erythropoietin treatment was associated with less brain injury only in patients whose placentas exhibited no chronic histologic changes. Placentas may provide clues to treatment response in HIE.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Eritropoyetina/uso terapéutico , Hipoxia-Isquemia Encefálica/patología , Placenta/patología , Encéfalo/patología , Método Doble Ciego , Femenino , Humanos , Hipotermia Inducida , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Embarazo
19.
Clin Auton Res ; 30(2): 165-172, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31240423

RESUMEN

PURPOSE: To compare early changes in autonomic nervous system (ANS) tone between newborns with complex congenital heart disease (CHD) and newborns without CHD. METHODS: We performed a case-control study of heart rate variability (HRV) in newborns with complex CHD [transposition of the great arteries (TGA) or hypoplastic left heart syndrome (HLHS)] and low-risk control newborns without CHD. Cases with CHD were admitted following birth to a pediatric cardiac intensive care unit and had archived continuous ECG data. Control infants were prospectively enrolled at birth. ECG data in cases and controls were analyzed for HRV in the time and frequency domains at 24 h of age. We analyzed the following HRV metrics: alpha short (αs), alpha long (αL), root mean square short and long (RMSs and RMSL), low-frequency (LF) power, normalized LF (nLF), high-frequency (HF) power, and normalized HF (nHF). We used ANOVA to compare HRV metrics between groups and to control for medication exposures. RESULTS: HRV data from 57 infants with CHD (TGA, n = 33 and HLHS, n = 24) and from 29 controls were analyzed. The HRV metrics αS, RMSL, LF, and nLF were significantly lower in infants with CHD than in the controls. Due to the effect of normalization, nHF was higher in CHD infants (P < 0.0001), although absolute HF was lower (P = 0.0461). After adjusting for medications, αS and nLF remained lower and nHF higher in newborns with CHD (P < 0.0005). CONCLUSIONS: Infants with complex CHD have depressed autonomic balance in the early postnatal period, which may complicate the fetal-neonatal transition.


Asunto(s)
Electrocardiografía/tendencias , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/fisiopatología , Frecuencia Cardíaca/fisiología , Estudios de Casos y Controles , Femenino , Humanos , Recién Nacido , Masculino , Estudios Prospectivos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA